APPENDIX A FRONTIER GEOSCIENCES FMSS TEST METHOD DESCRIPTION COMPARISON OF CVAAS AND CVAFS ANALYSIS

FRONTIER GEOSCIENCES INC. 414 PONTIUS AVENUE NORTH SEATTLE, WA 98109

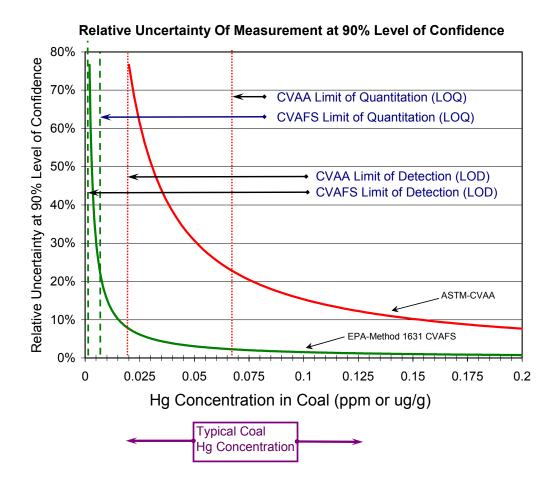
FLUEGAS MERCURY SORBENT SPECIATION (FMSS) METHOD

The FMSS method relies on sequential selective capture to separate and quantify three mercury species, particulate Hg (PHg), gaseous oxidized (Hg(II)_o), and gaseous elemental (Hg⁰). A known, precise volume (±0.1 liter) of gas is pulled through the FMSS sorbent train using standard sampling equipment including a quartz probe liner, heated probe, silica-gel water trap, mass flow meter and pump (FGS MFM Fluegas SOP). The FMSS method is setup to sample semi-isokinetically to more accurately quantify PHg using a buttonhook nozzle directed into the vent gas flow. The PHg is captured on a quartz-fiber filter with the gas phase Hg(II) and Hg⁰ passing through to be captured on a potassium chloride (KCl) coated quartz sorbent trap and finally the iodinated (IC) sorbent trap, respectively. The temperature of the FMSS sorbent train is kept at 95 ± 5 °C during sampling to avoid water condensation in the trap. The water in the vent gas condenses in a silica gel water-trap behind the FMSS sorbent train. The water can be quantified by weight difference to provide a backup value for percent water and also to calculate wet sample volume as needed for select vents. The sorbed Hg⁰ on iodinated carbon and the PHg on the quartz filter is leached of collected Hg in the clean lab using hot-refluxing HNO₃/H₂SO₄, then further oxidation in BrCl solution (FGS SOP-009.3). The sorbed Hg (II) on the KCl-quartz trap is dissolved in (v/v) BrCl solution (FGS SOP-031.2). Aliquots of all three Hg species digests are analyzed using cold vapor atomic fluorescence spectroscopy (CVAFS) following the analytical principles of EPA Method 1631 (FGS SOP-069.2). The FMSS and precursor method have been widely used for both speciated Hg in flue gas matrices (Bloom, 1993; Bloom et al., 1995; Prestbo and Bloom, 1995; Nott, 1995; Laudal et al., 1997; Grover et al., 1999). The FMSS method has recently undergone rigorous validation experiments in coal flue gas against the ASTM promulgated Ontario-Hydro Method (DOE-NETL, 2001; EERC, 2001). Quality assurance of the method usually includes field duplicates, field blanks, trip blanks, lab reagent blanks, 5-point calibration curve, continuing calibration verification, duplicate analyses, analytical spike recoveries, initial calibration blanks, continuing calibration blanks and standard reference material recovery.

Figure A-1. Schematic of the FMSS Method sample train.

REFERENCES

- Bloom, N.S. (1993) "Mercury Speciation in Flue Gases: Overcoming the Analytical Difficulties." *Managing Hazardous Air Pollutants: State of the Art.* (W. Chow and K. Connor, Eds.), EPRI TR-10189, Lewis Publishers, Boca Raton, USA p. 148.
- Bloom, N.S., Prestbo E.M., Hall B. and von der Geest E.J. (1995) "Determination of Atmospheric Hg by Collection on Iodated Carbon, Acid Digestion and CVAFS Detection," *Water, Air, and Soil Pollution.* **80**: 1315-1318.
- DOE, National Energy Technology Laboratory (2001) "Comparison of Sampling Methods to Determine Total and Speciated Mercury in Flue Gas," CRADA 00-F038 Final Report DOE/NETL-2001/1147, Pittsburgh, USA.
- EERC, Energy and Environmental Research Center at the University of North Dakota (2001) "A Validation Study at the EERC of the Fluegas Mercury Sorbent Speciation (FMSS) Method," Draft Final Report (Contact Eric Prestbo, Frontier Geosciences Inc., ericp@frontiergeosciences.com).
- FGS MFM Fluegas SOP (2000) "Frontier Sorbent Total Hg Method" Frontier Geosciences Draft SOP, www.frontiergeosciences.com, Seattle, WA USA.
- FGS SOP-009.3 (2001) "THg on IC Traps," Frontier Geosciences, <u>www.frontiergeosciences.com</u>, Seattle WA, USA.
- FGS SOP-069.2 (2001) "THg Analysis," Frontier Geosciences, <u>www.frontiergeosciences.com</u>, Seattle WA, USA.
- FGS SOP-031.2 (2000) "Mercury Digest for Gas/Air Samples Collected on KCl/Quartz," Frontier Geosciences, www.frontiergeosciences.com, Seattle WA, USA.
- Grover C., J. Butz, S. Haythornthwaite, J. Smith M. Fox, T. Hunt, R. Chang, T. D. Brown and E. Prestbo, (1999) "Mercury Measurements Across Particulate Collectors of PSCO Coal-Fired Utility Boilers," *Proceedings of the Utility Mega Conference*, Atlanta
- Laudal D.L., Heidt M.K., Brown T.D., Nott B.R. and Prestbo E.M. (1996) Mercury Speciation: A Comparison Between EPA Method 29 and Other Sampling Methods, proceedings of the Air & Waste Mngmt Assoc. Annual Meeting, #96-WA64A.04.


Figure A-2. Comparison of coal analyses by CVAA and CVAFS. Provided by Frontier Geosciences.

Comparison of CVAA (ASTM) and CVAFS (EPA-1631) Methods for Coal Hg (Why should I pay more for a method with a lower detection limit?)

Example using figure below:

- 1) Assume your mean coal [Hg] is 0.04 ppm and number of analyses/quarter is 10.
- 2) The results below only include the method uncertainty natural coal variability will **increase** the 90% confidence interval calculated below this is a best case scenario!
- 3) For the CVAA method the relative uncertainty at 0.04 ppm is 38% (from upper curve) or 0.019 ppm
- 4) For the CVAFS method the relative uncertainty at 0.04 ppm is 3.8% (from lower curve) or 0.0019 ppm
- 5) Now calculate the 90% confidence interval to see if it is within 10% of the mean?
- 6) For CVAA, the 90% confidence interval would be 0.012 ppm or 30% of the mean answer NO
- 7) For CVAFS, the 90% confidence interval would be 0.0012 ppm or 3% of the mean answer YES

Conclusion: The only chance to keep sampling frequency at a minimum is to use a proven method to stay within EPA set level of 10% (now 30%) of the mean at 90% confidence interval - or - a more expensive per sample method may cost less overall if it decreases the number of samples required. The EPA-1631 CVAFS method will give more accurate and precise coal Hg concentration than the ASTM CVAA method.

APPENDIX B ADA-ES MERCURY SEMI-CONTINUOUS EMISSIONS MONITOR TEST METHOD DESCRIPTION

Mercury S-CEM

A semi-continuous mercury analyzer will be used during this program to provide near real-time feedback during baseline, parametric and long-term testing. Continuous measurement of mercury at the inlet and outlet of the particulate collector is considered a critical component of a field mercury control program where mercury levels fluctuate with boiler operation (temperature, load, etc.) and decisions must be made concerning parameters such as sorbent feed rate and cooling. The analyzers that will be used for this program consist of a commercially available cold vapor atomic absorption spectrometer (CVAAS) coupled with a gold amalgamation system (Au-CVAAS). Radian developed this type of system for EPRI (Carey, et al., 1998). A sketch of the system is shown in the figure below. One analyzer will be placed at the inlet of the particulate collector and one at the outlet of the particulate collector during this test program.

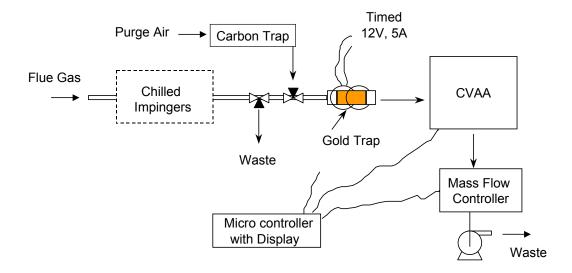


Figure C-1 Sketch of Mercury Measurement System

Although it is very difficult to transport non-elemental mercury in sampling lines, elemental mercury can be transported without significant problems. Since the Au-CVAAS measures mercury by using the distinct lines of UV absorption characteristic of elemental Hg (Hg⁰), the non-elemental fraction is either converted to elemental mercury (for total mercury measurement) or removed (for measurement of the elemental fraction) near the sample extraction point. This minimizes any losses due to the sampling system.

For total vapor-phase mercury measurements, all non-elemental vapor-phase mercury in the flue gas must be converted to elemental mercury. A reduction solution of stannous chloride in hydrochloric acid is used to convert Hg^{2+} to Hg^0 . The solution is mixed as prescribed in the draft Ontario Hydro Method for manual mercury measurements.

To measure speciated mercury, an impinger of potassium chloride (KCl) solution mixed as prescribed by the draft Ontario Hydro Method is placed upstream of the stannous chloride solution to capture oxidized mercury. Unique to this instrument is the ability to continuously refresh the impinger solutions to assure continuous exposure of the gas to active chemicals.

The Au-CVAAS system is calibrated using elemental mercury vapor. The instrument is calibrated by injecting a metered volume of mercury-laden air into the analyzer. The mercury-laden air is from the air-space of a vial containing liquid mercury at a precisely measured temperature. The concentration of the mercury in the air is determined by the vapor pressure of the mercury at that temperature.

The Au-CVAAS can measure mercury over a wide range of concentrations. Since the detection limit of the analyzer is a function of the quantity of mercury on the gold wire and not concentration in the gas, the sampling time can be adjusted for different situations. Laboratory tests with stable permeation tube mercury sources and standard mercury solutions indicate that the noise level for this analyzer is 0.2 ng mercury. It is reasonable to sample at 50 - 100 times the noise level, therefore, during field testing the sampling time is set so at least 10 ng mercury is collected on the wire before desorption. The following table shows the sampling time required for different concentrations of mercury in the flue gas with 2 liters per minute sample flow.

Sampling Time Required for Au-CVAA Analyzer

VAPOR-PHASE MERCURY CONCENTRATION (μG/M³)	MINIMUM SAMPLE TIME (MIN)	NOISE LEVEL (μG/M³)
5	1	0.1
2.5	2	0.05
1	5	0.02
0.5	10	0.01

An oxygen analyzer will be placed downstream of the Au-CVAAS to monitor and store the oxygen levels in the gas stream. This is particularly useful when measuring changes in mercury across a pollution control device on a full-scale unit where air inleakage into the unit may dilute the gas sample and bias results. It is also useful to assure that no leaks develop in the sampling system over time.

Particulate is separated from the gas sample using a self-cleaning filter arrangement modified for use with this mercury analyzer under an EPRI mercury control program. This arrangement uses an annular filter arrangement where excess sample flow continuously scours particulate from the filter so as to minimize any mercury removal or conversion due to the presence of particulate.

The mercury analyzer described has been used extensively for lab testing and field testing at three full-scale coal-fired power plants burning Powder River Basin (PRB), eastern bituminous, and lignite coals under EPRI programs. Although draft Ontario Hydro mercury measurements were not conducted while the analyzer was on-site, levels measured by the analyzer were well within the range expected based on previous measurements with either the draft Ontario Hydro Method or a solid carbon trap.

In order to assure the quality of the data to be obtained during the field operations, Standard Operating Procedures have been developed and will be followed for these tests.

APPENDIX C

UNIT OPERATING DATA:

SUMMARIES

- C.1 BRANDON SHORES
- **C.2 CRANE STATION**
- C.3 WAGNER STATION

1 11 1

1 1 111

								ری	Stack CEM measurements	neasureme	ents
Date Site	Unit Test#	# Time	Load, MW	Opacity	Boiler 02	CO2, %	SO2, ppm	SO2, Ib/MI\ Nox, ppm		Nox, Ib/MN Heat	Heat input
4/14/2003 H.A. Wagner	2 Run 1	1 1220-1432	32 131	1 3.05	3.9	10.9	492	1.35	297	0.59	1405
4/15/2003 H.A. Wagner	2 Run 2		27 130	3.29	3.9	10.8	478	1.33	292	0.58	1405
4/15/2003 H.A. Wagner	2 Run 3		42 131	1 2.75	3.7	10.9	488	1.33	292	0.58	1418
4/16/2003 H.A. Wagner	3 Run 1		00 350	0 6.1	2.0	13.4	220	1.25	200	0.32	3220
4/16/2003 H.A. Wagner	3 Run 2		53 340	0 6.48		13.4	230	1.19	206	0.33	3160
4/16/2003 H.A. Wagner	3 Run 3		35 340	0 6.42	2.5	13.4	230	1.19	210	0.34	3160
4/17/2003 Brandon Shores	2 Run 1		05 682	3	3.5	11.9	433	1.09	291	0.53	5866
4/17/2003 Brandon Shores	2 Run 2	2 1800-2015	15 675	5 4	3.6	11.9	433	1.09	291	0.53	5866
4/18/2003 Brandon Shores	2 Run 3		35 668	8 2.8	3.7	11.85	424	1.07	281	0.51	5703
4/22/2003 Brandon Shores	1 Run 1		5 631	1 5.02	3.8	11.55	410	1.06	237	0.44	5008
4/22/2003 Brandon Shores	1 Run 2	2 1310-1536	36 631	1 5.95	3.6	11.55	410	1.06	237	0.44	5008
4/22/2003 Brandon Shores	1 Run 3		31 632	2 6.06	3.4	11.55	410	1.06	237	0.44	5008
4/23/2003 Crane	1 Run 1		46 200	0 5.71	3.0	12.9	1119	2.4	267	0.443	1978
4/23/2003 Crane	1 Run 2	2 1555-1815	15 200	0 4.75	2.8	12.9	1119	2.4	267	0.443	1978
4/24/2003 Crane	1 Run 3	3 0850-110	06 200	0 5.42	2.5	13.3	1229	2.56	259	0.418	1988
4/24/2003 Crane	2 Run 1	1 1513-172	25 206	5 7.18	2.9	13	1178	2.53	933	1.55	1935
4/25/2003 Crane	2 Run 2	2 0710-093	31 205	5 6.1	2.6	12.8	1236	2.69	902	1.53	1939
4/25/2003 Crane	2 Run 3	3 1025-124	43 205	5 6.26	2.5	12.8	1236	2.69	902	1.53	1939

12/3/2003

Unit Data

Campaign Two	0						Stack CEM measurements	measurem	ents	
Date	Site	Unit Test#	st#	Time	Load, MW	Opacity	CO2, %	SO2, ppm	Nox, ppm	Nox, Ib/MMBtu
9/17/2003	Brandon Shores	1 Runs	ns 1, 2, 3	0800-1700	674	9.53	11.8	416	06	0.16
9/17 - 18/03	9/17 - 18/03 Brandon Shores	1 Ru	Run 4	1930-0652	variable: 557 avg	6.49	11.08	378	83	0.161
9/21/2003	Brandon Shores	1 Rui	Run 5	0725-1606	0725-1606 variable: 423 avg	~ 2	9.33	318	87	
9/21 - 26/03	9/21 - 26/03 Brandon Shores	1 Rui	Run 6	1756-1110	variable: 512 avg	68'9	10.03	343	69	0.15
9/30 -10/1/03	9/30 -10/1/03 Brandon Shores	1 Run 7	n 7	1117-0744	1117-0744 variable: 511 avg	5.11	10.57	356	68	0.146
10/2 - 10/3/03	10/2 - 10/3/03 Brandon Shores	1 Ru	Run 8	1149-0834	149-0834 variable: 316 avg	4.94	9.11	316	176	0.416
10/3/2003	Brandon Shores	1 Ru	Run 9	0919-1018	829	7.5	11.55	416	235	0.435
10/3/2003	Brandon Shores	1 Run 1	n 10	1102-1153	variable: 540 avg	4.6	10.62	374	214	0.435
	Brandon Shores	2 Runs	ns 1, 2, 3	0800-1700	variable: 510 avg	4.43	10.98	390	9/	0.15
9/19/2003		3 Low L	w Load	1600-1159	140	1.36	9.5	434	32	0.072
9/20/2003	HA Wagner	3 High L	th Load	0900-1900	0900-1900 variable: 269 avg	1.56	11.5	526	22	0.108

APPENDIX C.1 BRANDON SHORES DATA CAMPAIGN TWO

	Sandarak
	ξĻ
	Ł
	\$C
	LILLIAN DESCRIPTION OF THE SECOND
	100
	ž.
	LL LL LL
	ŀ
_	5
ノ	L L L L L L L L L L L L L L L L L L L
$\overline{}$	gar.
7	į
\leq	100
	ě.
	400
	Sandrage Section Control Contr
-	8
• •	4.0
٠,	Sept Sections
ॐ	0.000
_	Ĭ
	September (September 2)
	221
	100
	10000
	Sections and the section of the sect

14:44:17 drop200

| 17-Sep-2003 S1111 سا ZOO! Period: 00:00:16 Page 🗆 Tabular) 11:39:59 EDT Historical Trend Display 1 PRULESS PROLESS Create new... ₹ S End Time: 17-Sep-03 ACTUAL ACTUAL ACTUAL ACTUAL ACTUAL ACTUAL ACTUAL PPM DEGF LB/HR 18/MEI PPM Groups... PPM LB/HR SCR 11 OUTLET FLUE NOX 11 SCR AMMONIA FLOW LB SCR 12 OUTLET FLUE NOX SCR 12 INLET TEMP ANG 12 SCR AMMONIA FLOW STACK NOX EMISSIONS (18/4MBTU) 18 SCR 12 INLET FLUE NOX SCR 51 TREMP AND SCR 51 TR Modify... Start Time: 17-Sep-03 09:00:00 EDT Brandon Status Abort

019M15LA 0019X121 01AM15MA A19006A 0019X621 01AM06DA

Select 🎻

t-

250.00 700 2000.0 2.00 300.00

VAL ۲AL

ACTUAL ACTUAL ACTUAL. 1681 DY

DEGF DEGF DEGF

GAS FROM ECON TO PRECIP 11
GAS FROM ECON TO PRECIP 12
GAS FROM ECON TO PRECIP 12

A UTAMOOFX
A UTAMOSCX
A UTATOGNX
A UTATOGNA
A UTATOGVA
A UTATOGVA
A UTATOGVA

的第三人称形式 经银币

ATR-FUEL RATIO ONYGEN AVERAGE

375.00 **680** 260.00 00 11.7 650.0 200.00

2.80 325.00 650 650

1 Tick = 16.0 Minutes

Retrieval is complete

Historical Trend Display 1 PROCESS PROCESS

[** ** ** 17-Sep-2003

14:47:32 drop200

Tabular) End Time: 17-Sep-03 15:09:41 EDI

Create new... ←)

Groups...

Mod1fy...

Status

Abort

Select

Brandon

Start Time: 17-Sep-03 12:00:00 EDT

Page ()

Period: 00:00:19

33.45 1 Zoom

250.00 700 2000.0 2.00 300.00

VAL VAL KA S

ACTUAL ACTUAL ACTUAL

PPM

12 OUTLET FLUE NOW 12 INLET IEMP AVG

SCR 11 OUTLET FLUE NOX 11 SCR AMMONIA FLOW

U1AM15LA 0019X121 U1AM15MA A19006A

LB/HR

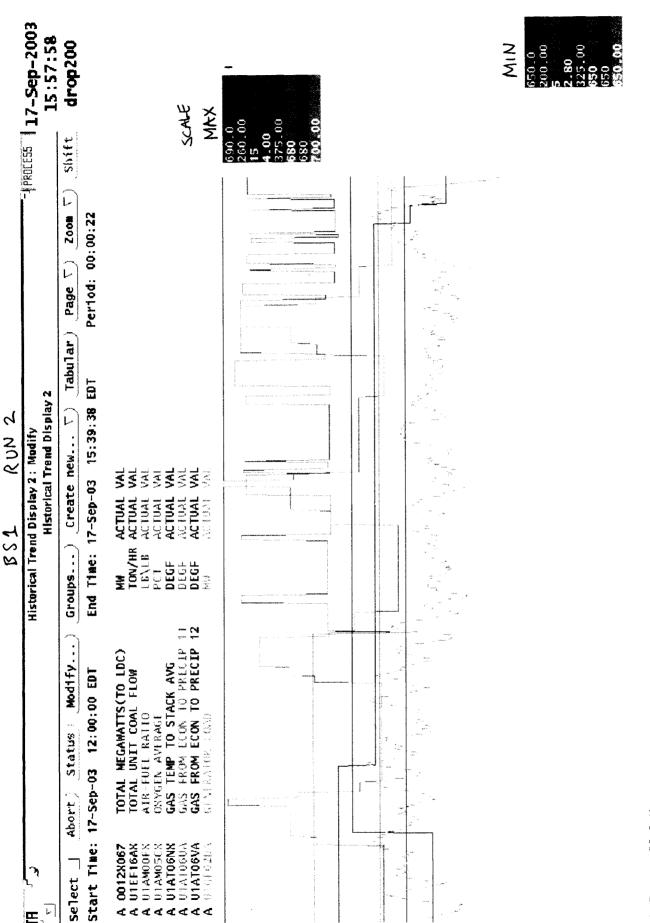
ACTUAL ACTUAL

PPW PPW BFGF

12 SCR AMMONIA FLOW
STACK NOS FMISSIONS (16/4MB/10)
SCR 12 INLET FLUE NOX

U1AM15KA UIAMOGDA 00198621

A \$ \$ \$ 0 0 4 A


YAL

ACTUAL ACTUAL

PPM LB/HR

zajádpopápaananaddraváfápaadárásyá, consarátárádárábábatagappadágárágárásonnangadábárapravasoftphotaspatárátavábbanagta,

1 Tick = 22.0 Winutes

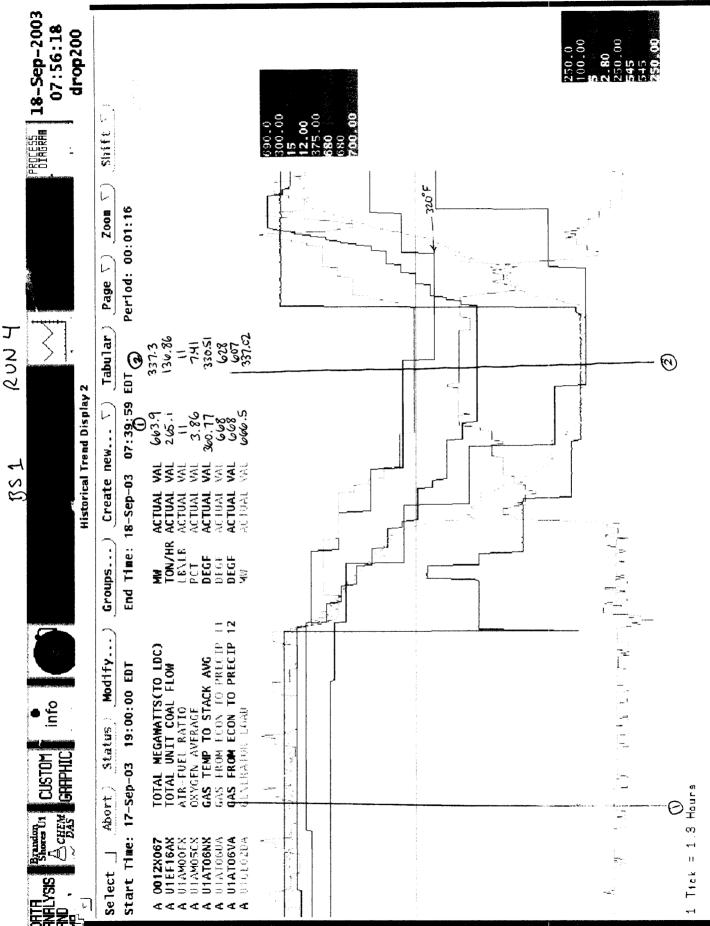
Retrieval is complete

18-Sep-2003 07:50:43 drop200 \$ 1.45 \$ 1.45 MOOZ Period: 00:00:22 Page | Tabular 18:39:38 EDT Historical Trend Display 1 PROCESS Create new... VAL VAL VAL VAL End Time: 17-Sep-03 ACTUAL ACTUAL ACTUAL SCR 11 OUTLET FLUE NOX LB/HR AC 11 SCR AMMONIA FLOW LB/HR AC SCR 12 OUTLET FLUE NOX PPM AC SCR 12 INLET TEMP AVG LB/HR AC STACK NOX HMISSIONS (18/44MBTU) 18/MBT AC SCR 12 INLET FLUE NOX SCR 11 TATET TEMP AVG SCR 11 TATET Groups... Modify... Start Time: 17-Sep-03 15:00:00 EDT Brandon Status Abort **U1AM15LA** 0019X121 U1AM15MA A19006A

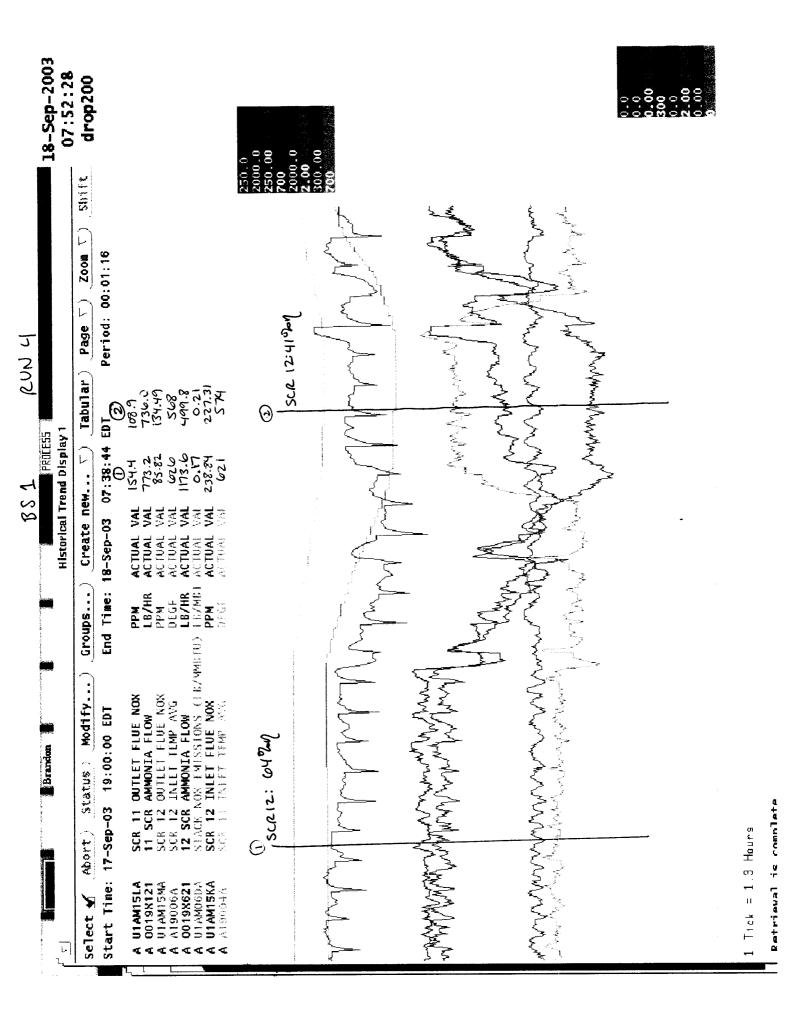
Select 🗲

₹

ACTUAL SETTING


ACTUAL ACTUAL ACTUAL

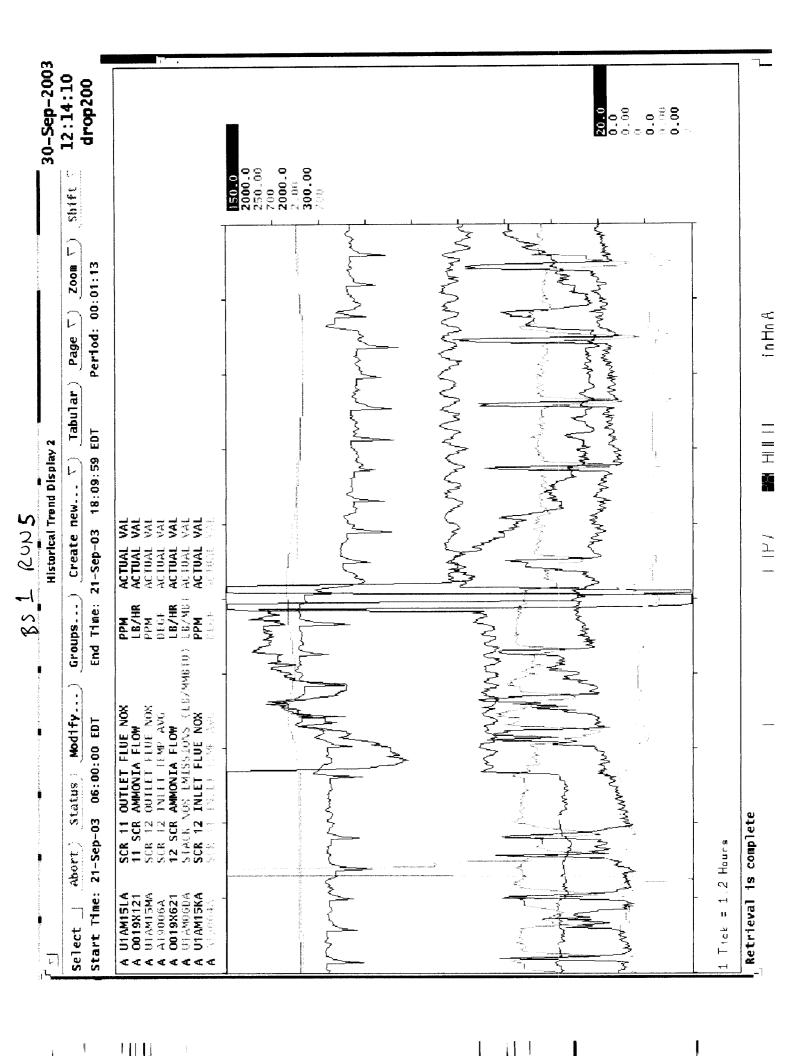
0019X621 U1AM06DA **U1AM15KA** A \$ 50.04A 2000.0 250.00 700 2000.0 2000.0 300.00


Layran Lutaharan Janouri Layran Laurya, jeun Layran Laurya, La

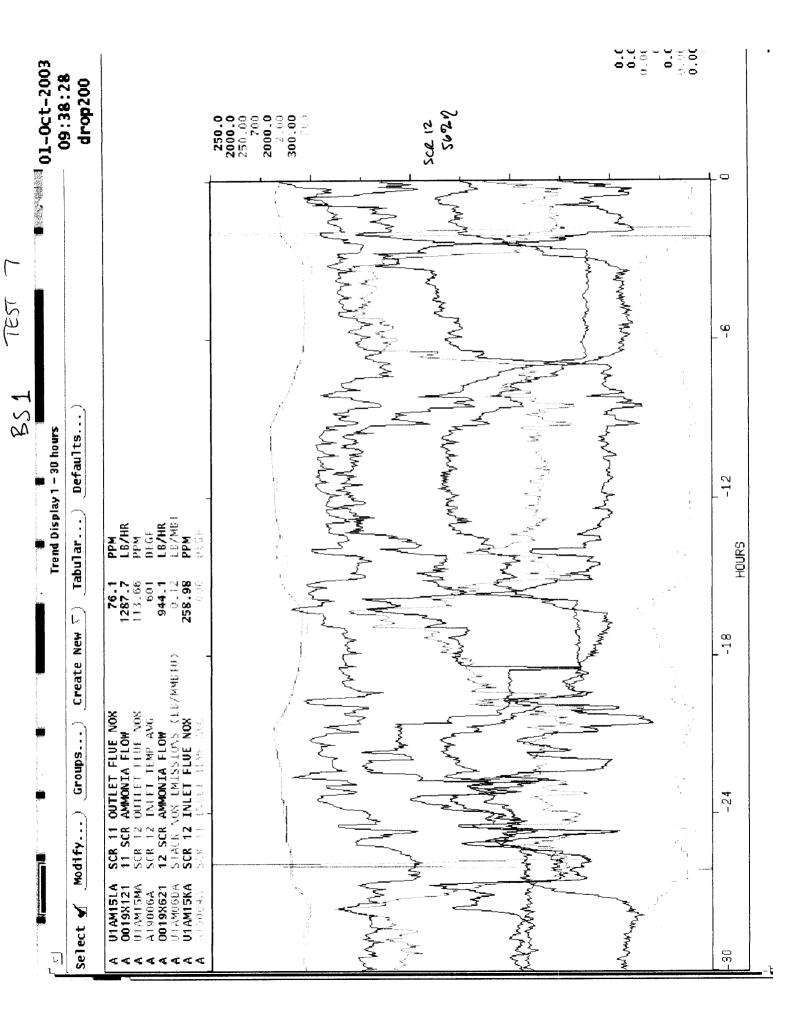
Retrieval is complete

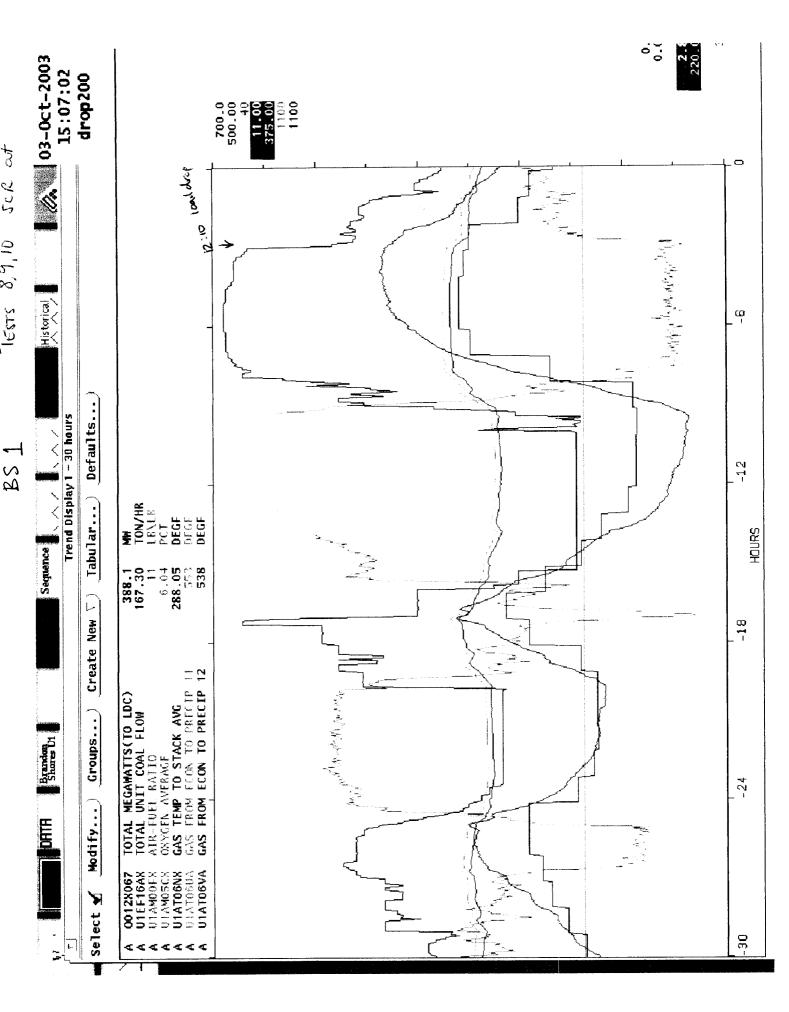
Retrieval in complete

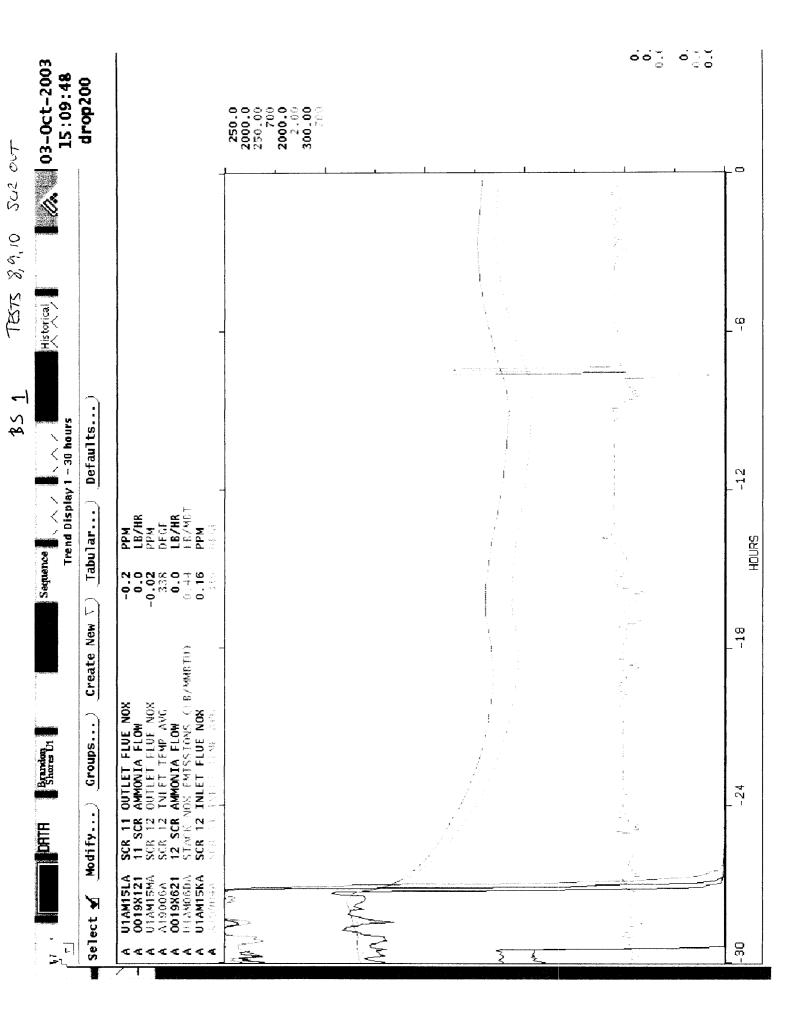
Retrieval is complete

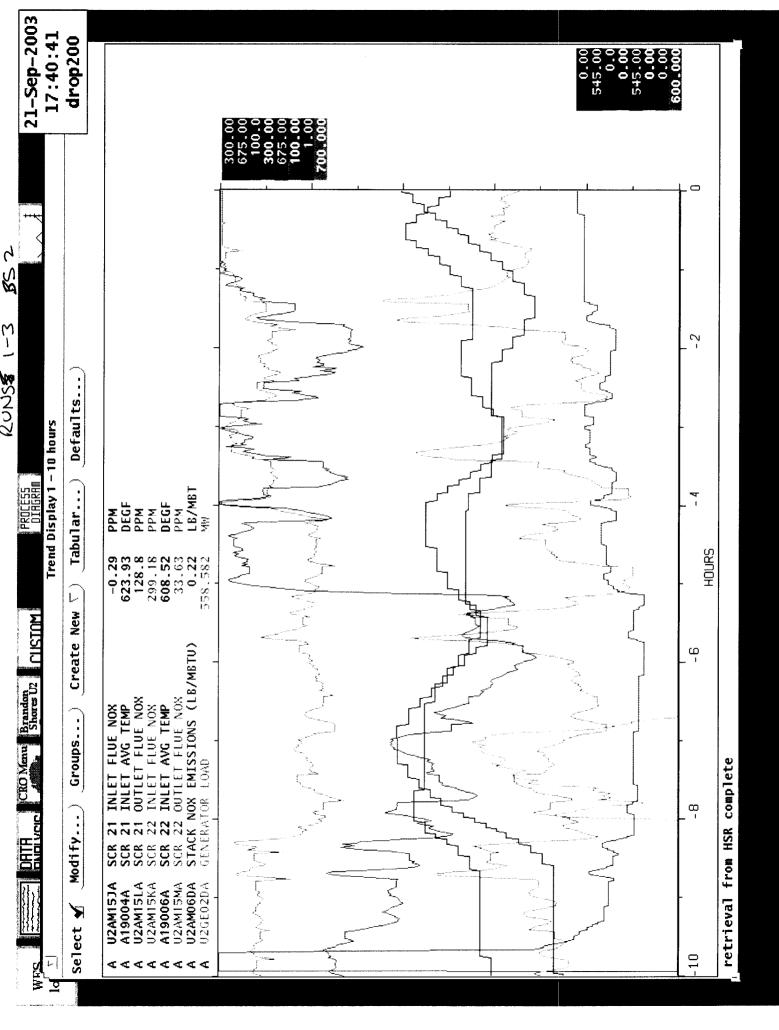


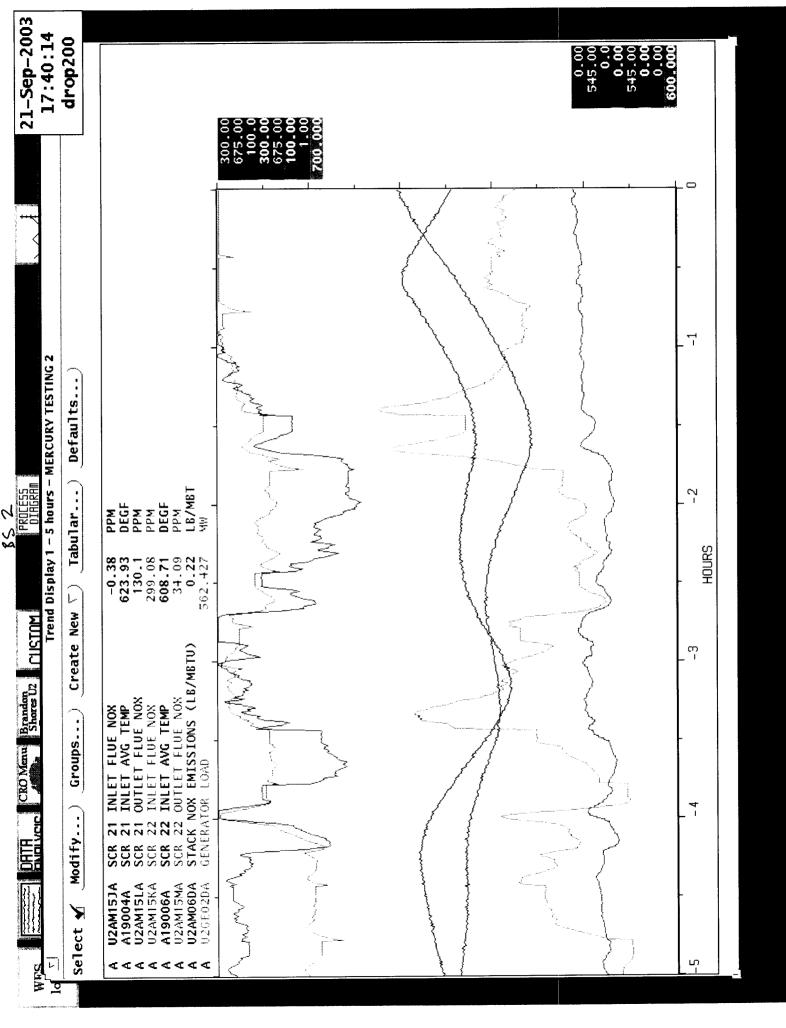
in Hn A

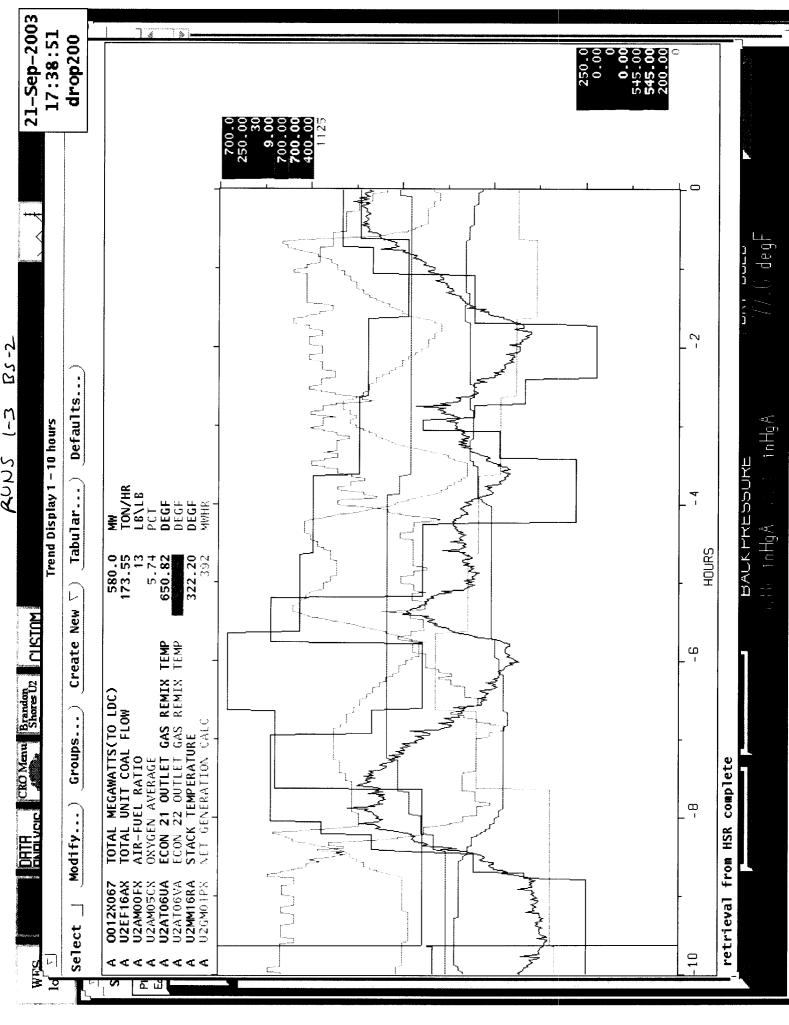

東京 一次 一天


A STATE OF THE STA


SCR AMMONIA FLUE NOX SCR AMMONIA FLUE 12 OUTLET FLUE NOX SCR AMMONIA FLUE SCR AMMONIA FLUE SCR AMMONIA FLUE 12 INLET FLUE NOX 14 INLET FLUE NOX SCR AMMONIA FLUE SCR	0019X121 011AM15MA 019X621 019X621 01AM06DA 01AM15KA		VAL 163.6 · VAL 553.5 VAL 92.99
	<		VAL VAL VAL
ours complete	Mayor		20.0 0.0 0.0 0.0 0.00




Retrieval is complete



General Average Report

Reporting Period: 09/21/2003 to 09/21/2003

Site Name: UNIT2
Data Averaging Type: 6m

Time of Report: 09/21/03 16:07 Rolling Average Interval: 1

		MW_P60		
Date	Time	(mw)		
09/21/03	09:06	633.92		
	09:12	635.78		
	09:18	638.50		
	09:24	641.42		
	09:30	643.43		
	09:36	641.44		
	09:42	622.93		
	09:48	608.30		
	09:54	596.96		
	10:00	589.25		
	10:06	577.87		
	10:12	567.24		
	10:18	550.96		MIL)
	10:24	534.13 RUN	1	AVG LOAD = 573 MW
	10:30	523.41	_	
	10:36	515.18		
	10:42	516.53		
	10:48	527.62		
	10:54	551.25		
	11:00	558.16		
	11:06	561.10		
	11:12	548.94		
	11:18	532.18		
	11:24	514.50 494.53		
	11:30 11:36	490.95		
	11:42	497.86		
	11:48	500.50		
	11:54	500.83		
	12:00	503.81		
	12:06	502.84		
	12:12	502.80		
	12:18	504.38		
	12:24	468.52		
	12:30	439.04		
	12:36	433.88		
	12:42	417.80		
	12:48	413.81		
	12:54	406.40		
	13:00	397.44		
	13:06	417.29	LIG	2 AV6 LOAD = 429.7 MW
	13:12	431.81 \C	V , -	2 11 4 0 0 0 10 10 10 10 10 10 10 10 10 10 10
	13:18	436.58		
	13:24	430.97		
	13:30	432.63		
	13:36	430.83		
	13:42	441.00		
	13:48	445.33		
	13:54	412.95		
	14:00	408.06		

General Average Report

Reporting Period: 09/21/2003 to 09/21/2003

Site Name: UNIT2 Time of Report: 09/21/03 16:07
Data Averaging Type: 6m Rolling Average Interval: 1

			MW_P6	0									
	Date	Time	(mw)									
09	/21/03	14:06	40	6.65									
		14:12	38	36.61									
		14:18	37	8.07									
		14:24	36	8.02									
		14:30	36	1.34									
		14:36	35	3.50									
		14:42	35	2.77									
		14:48	35	0.78									
		14:54	38	9.80									
		15:00	40	3.13									
		15:06	40	5.94	i								
		15:12	41	.1.53									
		15:18	41	.3.67									
		15:24	41	8.00									
		15:30	42	5.62	01113	ANG LOA	n - 1	1015 /	1-	_	- 4 0	\	
		15:36	43	3.31	15012	71.0 2011		190.6	(trom	Cem	DATH)	
		15:42	44	6.79									
		15:48	46	4.40									
		15:54	47	8.20									
		16:00	49	3.62									
		16:06		-999F									
		16:12		-999F									
		16:18		-999F									
		16:24		-999F									
		16:30		-999F									
		16:36		-999F									
		16:42		-999F									
		16:48		-999F									
		16:54		-999F									
		17:00		-999F									
		17:06		-999F]								
							-						

Average = 481.94 Maximum = 643.43

Minimum = 350.78

Possible Values = 81

Included Values = 70

Total = 33735.59

- excluded values (missing, OOC, invalid, suspect)

- missing

T - out-of-control

I - invalid

S - suspect

H - exceedance

F - stack not operating

B - invalid (PADER)

- missing data substituted

-999 - missing value

-888 - value could not be calculated

APPENDIX C.2 CRANE STATION DATA CAMPAIGN ONE

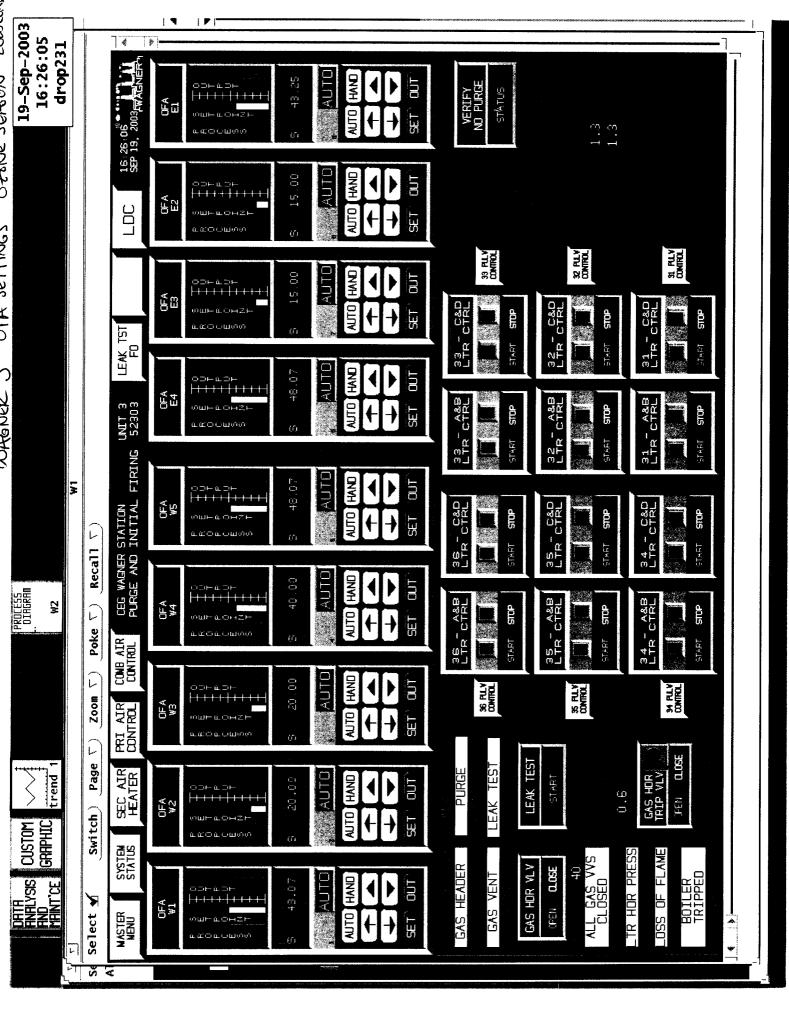
Crane CR Unit 1 Data

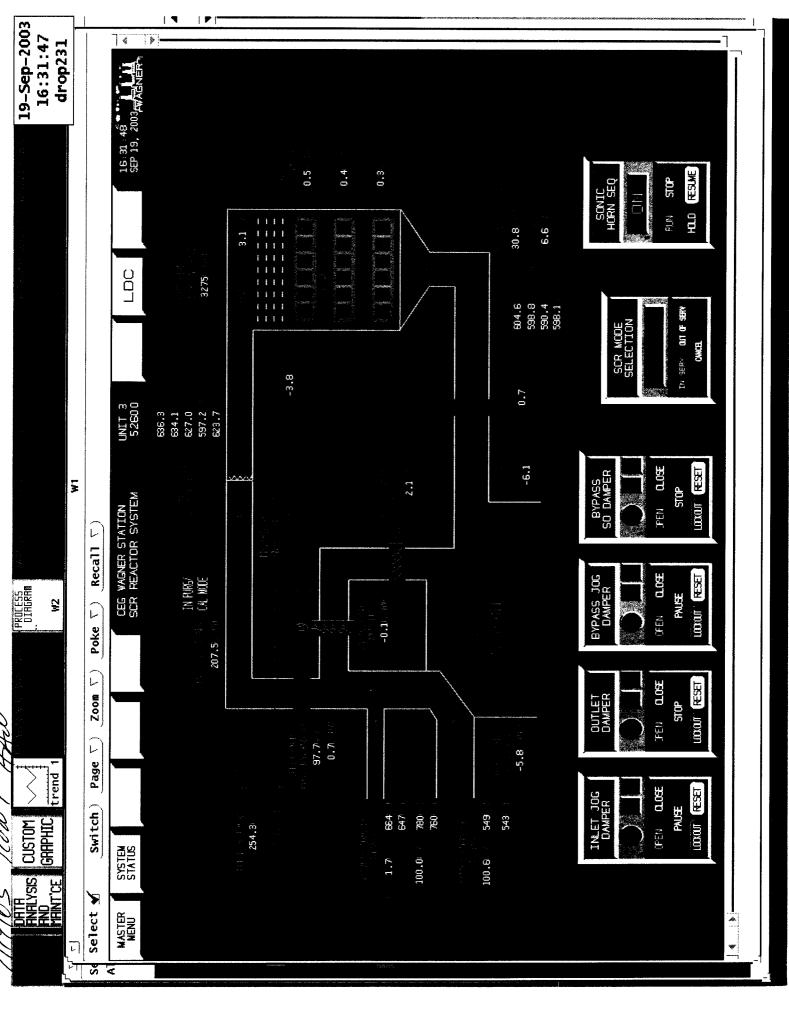
3lowi	Rec	psig	C1PT219	462.3	462.5	462.7	462.9	463 1	463.3	463.5	463.7	463.9	464.1	464.3	464.5	464.7	464.9	465.1	465.3	465.5	465.7	465.9	466.1	466.3	466.5	466.7	466.9	467.1	467.3	467.5	467.7	467.9	468.1	468.3	160 E
seport 1	L							L		L	L		_	L	4	2.		2.				L				L			L		ĺ				
Bagh'seoot Blow	, 음	"h2o	C1PT215	6.9			6.9	7.0	7.0	7.0	7.0	7.1	7.1	7.	7.	7	7.7	7.7	_	7.7	7.3	7.3	7.3	7.3	7.4	7.3	7.3	7.3	7.3	7.2	7.2	7.2	7.2	7.2	1
	12B	ton/hr	C1AI630	17.7	17.7	17.7	17.7	17.7	17.7	17.7	17.7	17.7	17.7	17.7	17.8	17.8	17.8	17.8	17.8	17.8	17.8	17.8	17.8	17.8	17.8	17.8	17.8	17.9	17.9	17.9	17.9	17.9	17.9	17.9	17.0
-lows	12A	ton/hr	C1AI620	17.4	17.4	17.3	17.3	17.3	17.2	17.2	17.2	17.1	17.1	17.1	17.0	17.0	17.0	16.9	17.0	17.4	17.5	17.6	17.7	17.8	17.9	17.9	17.9	17.9	17.2	17.2	17.3	17.4	17.5	17.5	17.6
Coal Flows	11B	ton/hr	C1AI610	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.7	17.7	17.7	17.7	17.7	47 p
	11A	ton/hr	C1AI600 (17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6
	12B	kpph	C1FT040	293.7	295.8	295.5	296.0	293.8	292.7	292.7	294.6	296.9	293.4	296.8	298.2	295.7	295.5	298.4	297.7	299.8	295.7	297.1	299.8	298.8	290.7	294.8	296.5	291.3	295.1	293.5	293.5	294.8	289.5	281.1	288 1
r Flows	12A	kpph	C1FT039 C	290.9	294.7	293.4	293.6	292.0	294.0	290.6	291.5	294.2	297.7	296.7	299.8	298.6	295.5	297.3	299.8	301.7	298.1	294.6	299.2	297.2	293.5	296.9	295.3	292.4	296.4	292.2	289.5	293.7	285.8	284.2	287 1
Cyclone Air Flows	11B	kpph	C1FT038 C	292.0	292.7	293.0	293.2	292.0	298.0	293.8	302.2	294.1	290.7	297.1	298.4	294.6	300.4	298.4	295.9	300.2	300.2	293.8	298.6	295.5	290.6	296.0	298.9	288.9	297.8		i	294.5	288.2	281.1	288 4
C	11A	kpph	C1FT037 C	293.3	295.3	296.5	294.8	288.7	294.0	294.4	299.7	299.5	288.6	299.6	300.1	297.5	295.3	301.7	297.8	301.4	301.7	294.9	308.2	300.3	293.7	292.8	290.9	296.4	296.2	0	3	4	292.2	285.3	282.0
	Gas Out	deg F	C1TE351B C	287.4	288.5	289.6	290.7	291.8	292.9	294.0	295.1	296.2	297.3	298.4	299.5	300.7	301.8	302.9	304.0	305.0	305.1	305.2	305.3	305.5	305.6	305.7	305.8	306.0	306.1	306.2	306.3	306.4	9		306.8
Temps	Gas In G	_		629.9	661.3	662.7	664.0	665.4	8.999	668.2	669.5	6.029	672.3	673.7	675.0	676.4	8.779	679.2	680.5	681.9	683.3	684.6	0.989	687.4	682.9	688.1	688.2	688.4	688.5	688.7	688.9	0.689	689.2	689.3	689.5
Air Heater	Air Out G		\overline{c}		549.4	ı		552.8]		9			4	١			J		0	\perp	-	7	- 1	8	က	4	572.5	2
Air		\neg	ᄗ	_				86.9						- 1				- 1		86.2 5		86.5 5			<u></u>	<u>.</u>	-	7	<u>س</u>	4.	9	<u></u>	<u></u>	6	-
За	n Air In		딍		Ī	ı				ı						İ		-			- 1														88
Flue Ga	N O ₂ (2 m		히		_	_	_	- 1	- 1	0 2.86	- 1	- 1	_	_			- 1	- [_ .		_	\dashv	\perp	\dashv	\perp			7	2	7	7	
_		%	C1AI22;C1.000	9 25.00	9 25.00	200 25.00	200 25.00	25.00	25.00	201 25.00	25.00	25.00	200 25.00	199 25.00	200 25.00	25.00	200 25.00	25.00	25.00	25.00	25.00	25.00	199 25.00	25.00	198 25.00	199 25.00	25.00	200 25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00
_	Load	≩	$\overline{}$	_	\dashv	\perp		_	_	_		_	4		_	_	- 1						_						\perp	200	200	200	200		
		j	Date & Time	4/23/03 10:00	4/23/03 10:10	4/23/03 10:20	4/23/03 10:30	4/23/03 10:40	4/23/03 10:50	4/23/03 11:00	4/23/03 11:10	4/23/03 11:20	4/23/03 11:30	4/23/03 11:40	4/23/03 11:50	4/23/03 12:00	4/23/03 12:10	4/23/03 12:20	4/23/03 12:30	4/23/03 12:40	4/23/03 12:50	4/23/03 13:00	4/23/03 13:10	4/23/03 13:20	4/23/03 13:30	4/23/03 13:40	4/23/03 13:50	4/23/03 14:00	4/23/03 14:10	4/23/03 14:20	4/23/03 14:30	4/23/03 14:40	4/23/03 14:50	4/23/03 15:00	4/23/03 15:10

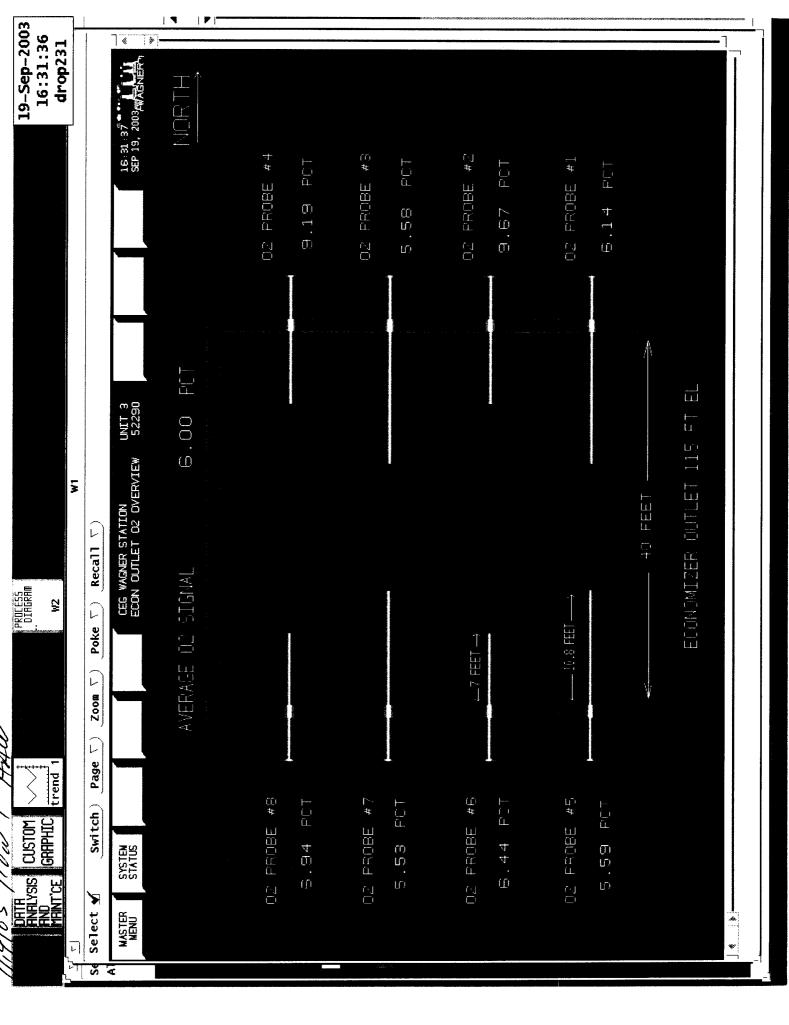
Crane CR Unit 1 Data

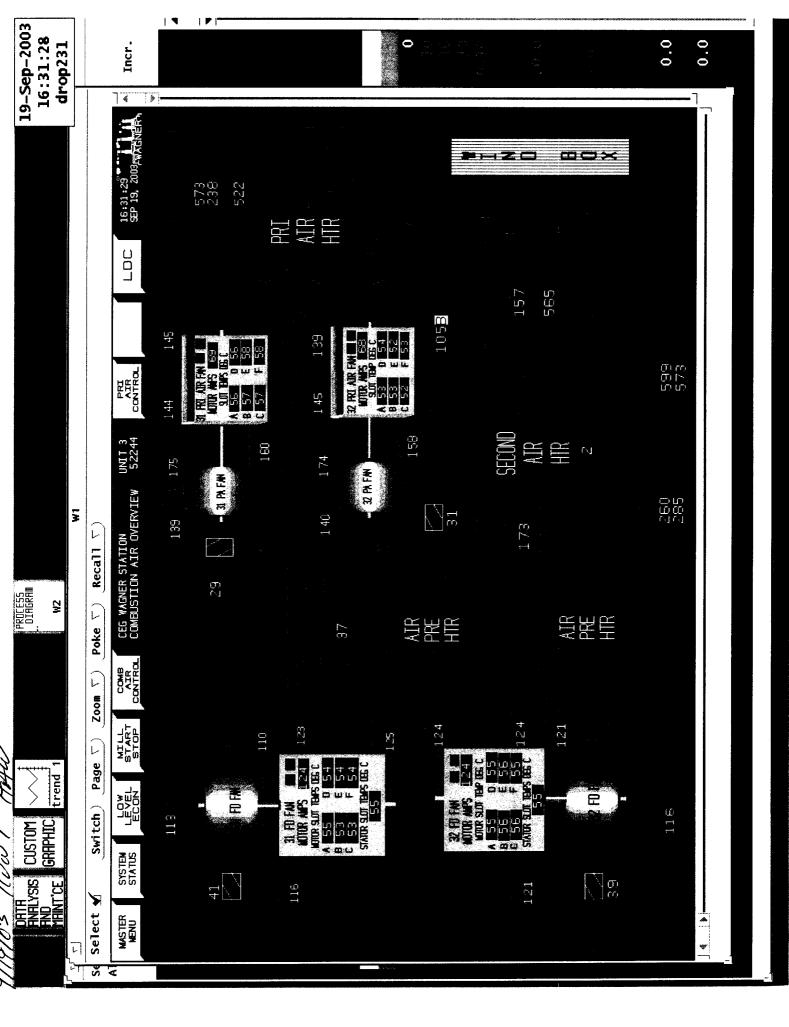
Bagh'seoot Blowi	Rec	psig	C1PT219	468.7	468.9	469.1	469.3	469.5	469.7	469.9	470.1	470.3	470.5	470.7	470.9	471.1	469.3	458.3	447.4	436.5	425.5	414.6	403.6	392.7	381.8	370.8	458.4	452.5	446.6	440.7	434.7	428.8	422.9	417.0	411.1
Bagh'se:	ВР	"h2o	C1PT215	7.1	7.1	7.1	7.0	7.0	7.0	7.0	6.9	6.9	6.9	6.9	6.9	6.8	6.8	8.9	8.9	6.7	6.7	6.7	6.7	9.9	9.9	9.9	4.6	4.6	4.7	4.7	4.8	4.8	4.9	4.9	5.0
	12B	ton/hr	C1AI630	17.9	17.9	17.9	17.8	17.8	17.8	17.8	17.8	17.8	17.71	17.7	17.7	17.7	17.7	17.6	17.6	17.6	17.6	17.6	17.5	17.5	17.5	17.5	17.1	17.1	17.1	17.1	17.1	17.1	17.1	17.0	17.0
-lows	12A	ton/hr	C1AI620	17.6	17.7	17.8	17.9	18.0	18.1	18.2	18.2	18.2	18.2	18.2	18.2	18.2	18.2	18.2	18.2	18.3	18.3	18.0	18.1	18.2	18.3	18.4	17.8	17.9	17.9	18.0	18.0	18.1	18.1	18.0	18.0
Coal Flows	11B	ton/hr	C1AI610	17.8	17.8	17.8	17.7	17.6	17.5	17.4	17.5	17.7	17.8	17.9	17.8	17.8	17.7	17.7	17.7	17.6	17.6	17.8	18.0	18.0	18.0	18.0	17.6	17.8	17.9	17.9	17.8	17.7	17.7	17.6	17.8
	11A	ton/hr	C1AI600	17.6	17.7	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.4	17.4	17.7	17.7	17.7	17.6	17.6	17.6	17.6	17.6	17.5
	12B	kpph	C1FT040	285.8	286.7	283.1	288.0	284.9	287.1	287.7	286.6	287.1	286.8	291.7	289.2	283.7	288.3	287.3	293.1	288.6	286.0	286.2	285.5	286.7	285.5	286.6	289.8	283.7	284.5	287.5	286.4	282.3	283.7	285.7	279.5
Vir Flows	12A	kpph	C1FT039	286.7	288.0	283.5	293.3	286.9	289.5	284.6	289.5	286.6	282.7	292.2	283.8	285.3	290.0	286.4	282.7	287.5	287.8	286.5	289.5	286.7	287.1	282.6	284.8	283.5	280.6	291.8	288.6	283.5	285.3	284.6	283.8
Cyclone Air Flows	11B	kpph	C1FT038 (289.9	287.2	286.6	289.4	289.3	285.5	285.2	286.0	286.2	288.0	292.7	285.1	288.6	290.9	288.0	287.7	289.1	284.7	286.6	290.9	286.7	286.4	281.1	284.4	280.2	285.7	288.9	285.6	283.6	285.3	284.2	281.6
	11A	kpph		292.4	285.0	282.0	286.0	283.3	285.7	291.1	283.8	291.8	283.7	286.7	292.9	284.2	288.4	281.1	286.4	283.1	283.1	292.0	291.3	284.2	282.7	287.5	289.8	275.6	283.5	276.0	286.4	283.8	290.4	284.4	278.9
	Gas Out	deg F	C1TE351B	306.9	307.0	307.2	307.3	307.4	307.5	307.7	307.8	307.9	308.0	308.1	308.3	308.4	308.5	308.6	308.8	308.9	309.0	309.1	309.2	309.4	309.5	309.6	263.4	264.7	266.1	267.4	268.7	270.0	271.3	272.6	273.9
er Temps	Gas In	deg F	C1TE349 (689.7	689.8	0.069	690.1	690.3	690.5	9.069	8.069	6.069	691.1	691.3	691.4	691.6	691.7	691.9	692.1	692.2	692.4	692.6	692.7	692.9	693.0	693.2	631.0	632.5	634.0	635.5	636.9	638.4	639.9	641.4	645.9
Air Heate	Air Out	deg F	C1TE348	572.6	572.6	572.7	572.7	572.8	572.8	572.9	573.0	573.0	573.1	573.1	573.2	573.2	573.3	573.3	573.4	573.5	573.5	573.6	573.6	573.7	573.7	573.8	521.1	523.5	525.9	528.3	530.7	533.1		537.8	540.2
	Air In	deg F	C1TE347	88.2	88.3	88.4	88.5	88.7	88.8	88.9	89.0	89.2	89.3	89.4	89.5	93.6	89.8	89.9	90.0	90.1	90.3	90.4	90.5	90.6	90.7	90.9	89.7	9.68	93.6	9.68	9.68	93.6	9.68	93.6	9.68
Flue Ga	O ₂ (2 m	%	C1.A852		2.88	2.88	2.88	2.88	2.88	2.88	2.88	2.88	2.89	2.89	2.89	2.89	2.89	2.89	2.89	2.89	2.89	2.89	2.89	2.89	2.89	2.89	2.49	2.49	2.49	2.49	2.49	2.48	2.48	2.48	2.48
	OFA	%	2; C1.000		25.00	25.00	25.00							25.00	25.00	25.00	25.00	25.00	25.00	25.00		25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00
	Load	≩	ပ်	_	_	_	_		_			_	\dashv	_			199	199	200	199	199	199	200			_1			199	200	200	200	200	200	200
			Date & Time	4/23/03 15:20	4/23/03 15:30	4/23/03 15:40	4/23/03 15:50	4/23/03 16:00	4/23/03 16:10	4/23/03 16:20	4/23/03 16:30	4/23/03 16:40	4/23/03 16:50	4/23/03 17:00	4/23/03 17:10	4/23/03 17:20	4/23/03 17:30	4/23/03 17:40	4/23/03 17:50	4/23/03 18:00	4/23/03 18:10	4/23/03 18:20	4/23/03 18:30	4/23/03 18:40	4/23/03 18:50	4/23/03 19:00	4/24/03 8:00	4/24/03 8:10	4/24/03 8:20	4/24/03 8:30	4/24/03 8:40	4/24/03 8:50	4/24/03 9:00	4/24/03 9:10	4/24/03 9:20

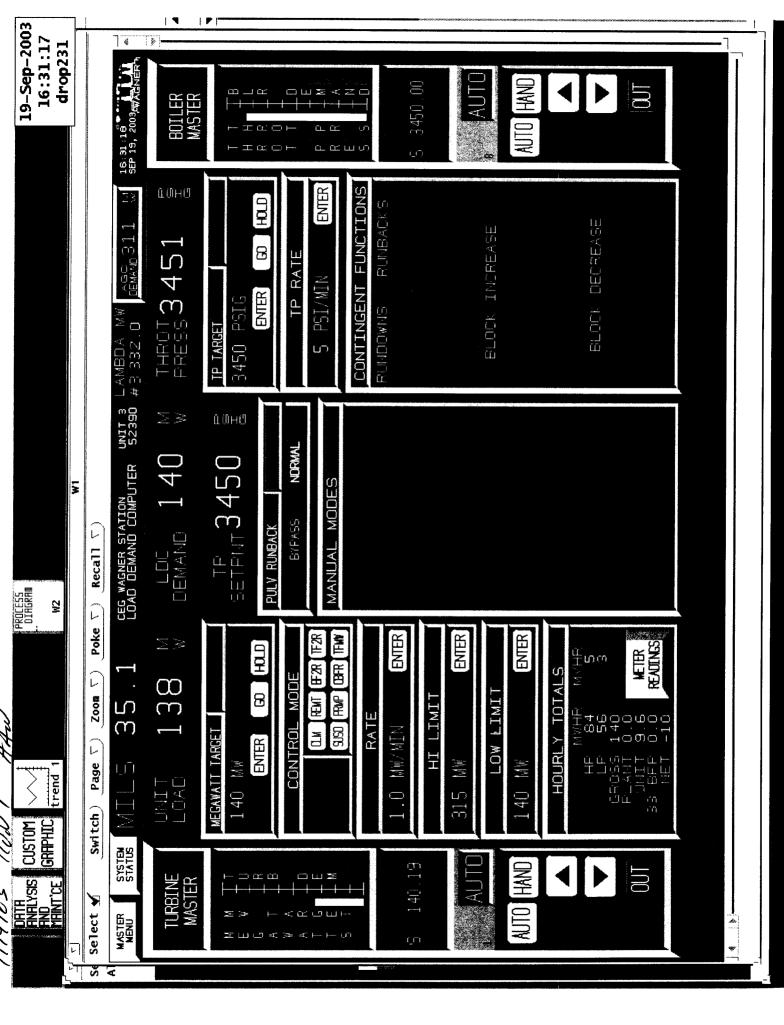
				Flue Ga		Air Heater	ter Temps			Cyclone	Cyclone Air Flows			Coal	Coal Flows		Bagh'seoot Blow	ot Blowi
		Load	OFA	Load OFA O_2 (2 m	Air In	Air Out	Gas In	Gas Out	11A	11B	12A	12B	11A	11B	12A	12B	Ы	Rec
		ΜW	%	%	deg F	deg F	deg F	deg F	kpph	kpph	kpph	kpph	ton/hr	ton/hr	ton/hr	ton/hr	"h2o	psig
니	Date & Time	C1AI22	C1.000	C1.A852	C1AI22 C1.000 C1.A852 C1TE347	C1TE348 C1	TE349	C1TE351B	C1FT037	C1FT038	C1FT039	C1FT040	C1AI600	C1AI610	C1AI620	C1AI630	C1PT215 C1PT219	C1PT219
	4/24/03 9:30		200 25.00	2.47	9.68	542.6	644.4	275.3	287.5	282.7	285.5	284.9	17.5	17.8	17.9	17.0	5.0	405.1
	4/24/03 9:40		200 25.00	2.47	89.5	545.0	642.9	276.6	284.2	282.4	284.0	283.3	17.5	17.9	17.7	17.0	5.1	399.2
	4/24/03 9:50		200 25.00	2.47	89.5	547.4	647.4	277.9	279.1	279.8	282.7	278.7	17.5	17.5	18.0	17.0	5.2	393.3
1	4/24/03 10:00		200 25.00	2.47	89.5	549.8	648.8	279.2	284.6	285.3	281.1	283.8	17.5	17.4	18.4	17.0	5.2	400.0
	4/24/03 10:10		200 25.00	2.47	89.5	552.2	620.3	280.5	278.9	282.8	288.4	284.6	17.5	17.4	18.3	17.0	5.3	408.7
٠.	4/24/03 10:20		200 25.00	2.46	89.5	554.6	651.8	281.8	288.4	285.3	283.4	285.8	17.4	17.4	18.3	17.0	5.3	417.3
'	4/24/03 10:30		200 25.00	2.46	89.5	922.0	653.3	283.1	282.7	284.7	286.7	284.0	17.4	17.4	18.2	17.0	5.4	425.9
٠,	4/24/03 10:40		200 25.00	2.46	89.5	559.3	654.8	284.5	277.6	279.8	283.5	284.3	17.4	17.5	18.0	17.0	5.4	434.5
٦,	4/24/03 10:50		200 25.00	2.46	89.5	561.7	656.3	285.8	277.8	283.7	285.8	282.3	17.4	17.5	17.8	17.0	5.5	443.1
١ ' ا	4/24/03 11:00		200 25.00	2.46	89.4	564.1	8.759	287.1	282.2	285.7	279.6	282.2	17.4	17.4	17.6	16.9	5.5	451.7
٦.	4/24/03 11:10		200 25.00	2.45	89.4	2999	659.2	288.4	276.4	280.9	281.6	279.5	17.3	17.1	17.5	16.9	5.6	460.3
٦.	4/24/03 11:20	200	200 25.00	2.45	89.4	566.3	2.099	289.7	279.2	281.1	281.8	283.0	17.3	16.8	17.5	16.9	5.7	468.9
٧.	4/24/03 11:30		200 25.00	2.45	89.4	566.4	662.2	291.0	278.8	283.7	284.2	280.6	17.3	17.0	17.5	16.9	5.7	477.5

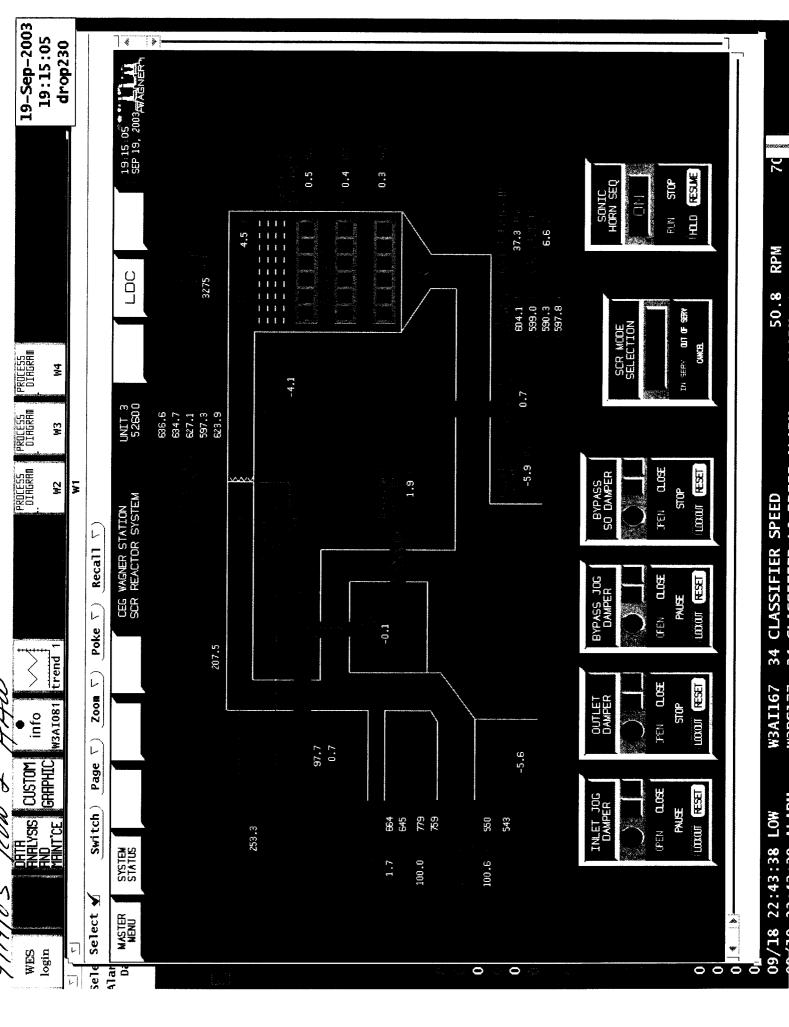

35

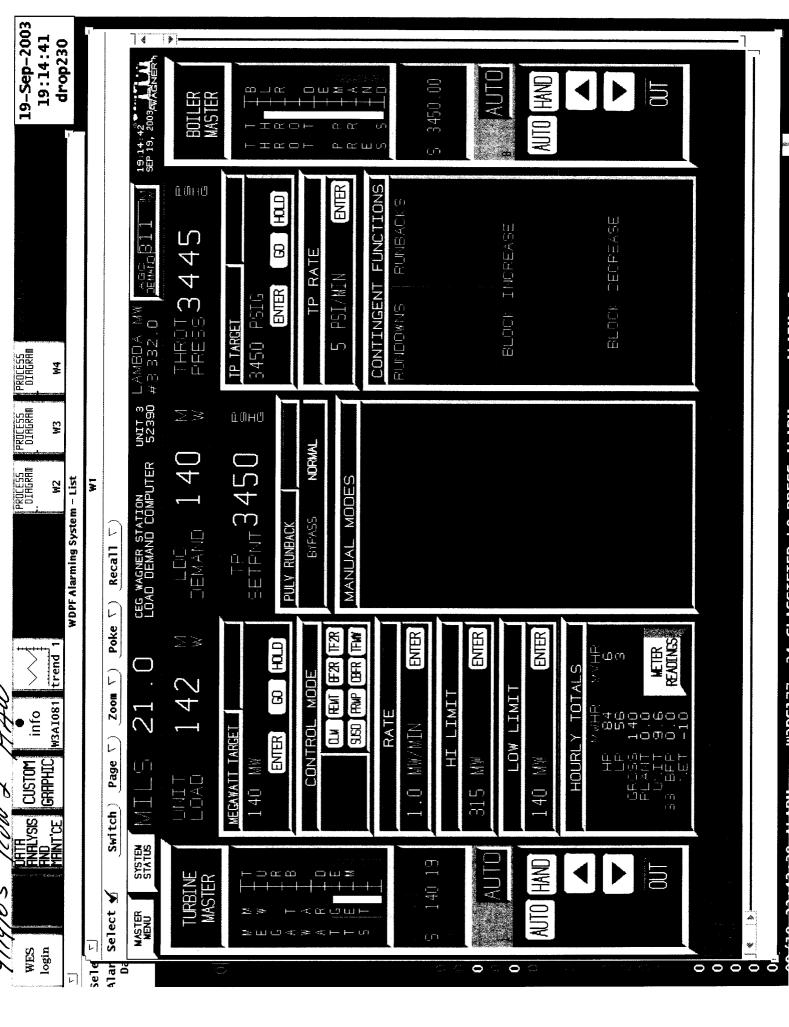

Load OFA O ₂ (2 min MW) MW % % MW % % AVZ4/03 13:00 20M 0.00 2.98 4/24/03 13:20 206 0.00 2.96 4/24/03 13:30 206 0.00 2.95 4/24/03 13:30 206 0.00 2.95 4/24/03 13:50 206 0.00 2.95 4/24/03 14:00 206 0.00 2.95 4/24/03 14:10 206 0.00 2.95 4/24/03 14:20 206 0.00 2.95 4/24/03 14:20 206 0.00 2.95 4/24/03 14:20 206 0.00 2.95 4/24/03 14:20 206 0.00 2.95 4/24/03 14:30 206 0.00 2.95			deg F C2TE348 551.7 552.7 553.5 554.7 558.3 559.4 559.4 559.4 559.4 559.2 559.2	Gas In (deg F C2TE349 C 674.6 675.8 677.0 678.3 679.5 680.7 681.1	Gas Out deg F C2TE351A C	61	21B kpph C2FT020	22A kpph		21A ton/hr	21B ton/hr	22A ton/hr	22B ton/hr	ΔP "h ₂ o	Hdr psig	Rec
MW C2.MW . 206 . 2					eg F E351/ 321.1					ton/hr	ton/hr	ton/hr	ton/hr	"h ₂ 0	psig	_
C2.MW 206	. 				E351A	_		_	_			-	-			psig
206 206 206 206 206 206 206 206 206 206	2.96 2.96 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95	86.9 87.4 87.9 87.9 88.9 88.9 89.5 90.0 90.5 91.3 91.3	551.7 552.7 553.5 554.7 555.9 556.0 559.4 559.4 559.4 559.8 559.8	674.6 675.8 677.0 678.3 679.5 680.7	321.1		_	_	C2FT022 (C2AI600	C2AI610	C2AI620	C2AI630 (C2PT215	C2PT228	C2PT229
206 206 206 206 206 206 206 206 206 206	2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95	86.9 87.4 87.9 88.9 89.5 90.0 90.5 91.3 91.3	552.7 553.5 554.7 554.7 558.3 558.3 559.4 559.4 559.4 559.8	675.8 677.0 678.3 679.5 680.7		379.1	386.3	382.8	382.5	18.3	18.2	18.2	18.0	8.8	483.7	483.9
206 206 206 206 206 206 206 206 206	2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95	87.4 87.9 88.9 88.9 89.5 90.0 90.5 91.0 91.3	553.5 554.7 555.9 557.1 559.3 559.4 556.6 556.6 553.8	677.0 678.3 679.5 680.7 681.1	321.6	376.9	381.2	382.8	383.0	18.3	18.1	18.2	18.0	9.0	477.1	474.7
206 206 206 206 206 206 206 206	2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95	87.9 88.4 88.9 89.5 90.0 90.5 91.3 91.3	554.7 555.9 557.1 558.3 559.4 559.4 553.8 554.2	678.3 679.5 680.7 681.1	322.1	382.1	381.6	381.7	383.6	18.4	18.1	18.2	18.0	8.1	481.2	481.1
206 206 206 206 206 206 206	2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95	88.9 88.9 89.5 90.0 90.5 91.3 91.3	555.9 557.1 559.4 559.4 556.6 556.6 554.2	679.5 680.7 681.1	322.7	380.7	388.6	382.4	381.9	18.4	18.1	18.1	18.0	8.8	482.1	481.5
206 206 206 206 206	2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95	88.9 89.5 90.0 90.5 91.3 91.3	557.1 558.3 559.4 556.6 553.8 554.2	680.7	323.2	380.4	379.0	377.4	380.5	18.4	18.1	18.1	18.0	8.8	475.6	472.4
206 206 206 206	2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95	89.5 90.0 90.5 91.0 91.3 91.5	558.3 559.4 556.6 553.8 554.2	681.1	323.7	377.9	385.9	383.8	381.4	18.4	18.1	18.1	18.0	7.9	486.1	487.5
206 206 206	2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95	90.0 90.5 91.0 91.3 91.5	559.4 556.6 553.8 554.2		324.2	381.6	380.3	379.7	378.0	18.4	18.1	18.1	18.0	8.7	470.3	466.3
206	2.95 2.95 2.95 2.95 2.95 2.95 2.95	90.5 91.0 91.3 91.5	556.6 553.8 554.2	680.0	324.7	373.2	375.5	375.1	375.2	18.5	18.1	18.1	17.9	9.0	443.8	448.2
206	2.95 2.95 2.95 2.95 2.95	91.0 91.3 91.5	553.8	0.929	325.3	375.4	372.5	380.1	378.5	18.5	18.0	18.1	17.9	7.8	450.6	458.9
	2.95 2.95 2.95 2.95	91.3 91.5 91.7	554.2	675.5	325.7	380.6	383.6	382.8	377.6	18.5	18.0	18.1	17.9	8.7	486.1	483.4
	2.95	91.5	L EEE A	9.929	326.2	376.1	380.8	378.5	380.3	18.5	18.0	18.0	17.9	9.3	476.4	469.8
206	2.95	91.7	555.4	9.779	326.6	378.5	381.9	378.3	378.8	18.5	18.0	18.0	17.9	8.0	477.4	476.9
206	2.95		9:955	9.879	327.1	383.9	375.4	375.0	375.5	18.4	18.0	18.0	17.9	9.0	478.7	480.2
15:10 206 0.00		91.9	557.3	9.629	327.5	378.5	381.9	378.2	381.5	18.3	18.0	18.0	17.9	9.4	472.2	472.1
	2.95	92.1	557.4	680.7	328.0	378.6	375.4	380.0	381.5	18.3	18.0	18.0	17.9	8.3	483.5	488.0
506	2.95	92.4	9.753	681.7	328.4	377.0	378.0	382.3	384.6	18.2	18.0	18.0	17.9	9.5	477.1	479.5
506	2.95	92.6	557.8	682.7	328.9	374.8	379.8	373.1	378.5	18.2	17.9	17.9	17.9	9.5	470.8	470.5
206	2.95	92.8	558.7	683.8	329.3	373.3	374.6	374.0	375.2	18.1	17.8	17.9	17.8	8.4	482.1	486.5
506	2.95	93.0	559.9	684.8	329.8	382.0	385.1	376.3	383.0	18.0	17.7	17.8	17.7	9.2	475.8	477.5
4 206	2.95	93.2	561.4	685.8	330.2	376.6	382.1	376.0	376.8	18.0	17.6	17.8	17.6	9.3	469.4	468.5
206	2.95	93.4	562.5	8.989	330.6	374.3	387.4	377.1	376.6	17.9	17.5	17.7	17.5	8.4	481.0	484.6
206	2.95	93.6	563.3	682.9	331.1	386.5	386.8	379.8	384.3	17.9	17.5	17.7	17.4	9.3	474.7	475.8
206	2.95	93.8	564.1	688.9	331.5	382.5	380.1	379.7	381.5	17.8	17.4	17.7	17.3	8.6	471.8	471.8
206	2.95			689.9	332.0	379.1	378.6	374.8	376.2	17.7	17.3	17.6	17.2	8.1	479.8	483.0
206	2.95	94.2		691.0	332.4	378.5	379.9	381.0	378.1	17.7	17.2	17.6	17.1	9.4	473.4	474.1
206	2.94			692.0	332.9	380.2	379.7	378.3	376.8	17.6	17.1	17.5	17.0	9.4	481.3	480.8
206	2.94	94.6	566.9	693.0	333.3	386.8	386.3	381.5	382.5	17.5	17.0	17.5	16.9	8.3	478.5	481.4
7 206	2.94	94.8	567.5	694.0	333.6	380.3	377.5	379.0	381.9	17.5	16.9	17.4	16.8	9.7	472.3	472.6
206	2.94	95.0	569.8	695.1	333.9	377.4	378.2	376.6	381.8	17.4	16.8	17.4	16.7	10.0	483.9	488.5
206	2.94	95.2	570.9	696.1	334.3	374.8	372.8	377.0	379.9	17.4	16.7	17.3	16.6	8.8	477.8	480.3
18:00 206 0.00	2.94	95.4	572.0	697.1	334.6	380.8	375.9	382.1	381.2	17.3	16.6	17.3	16.5	6.6	471.7	471.6

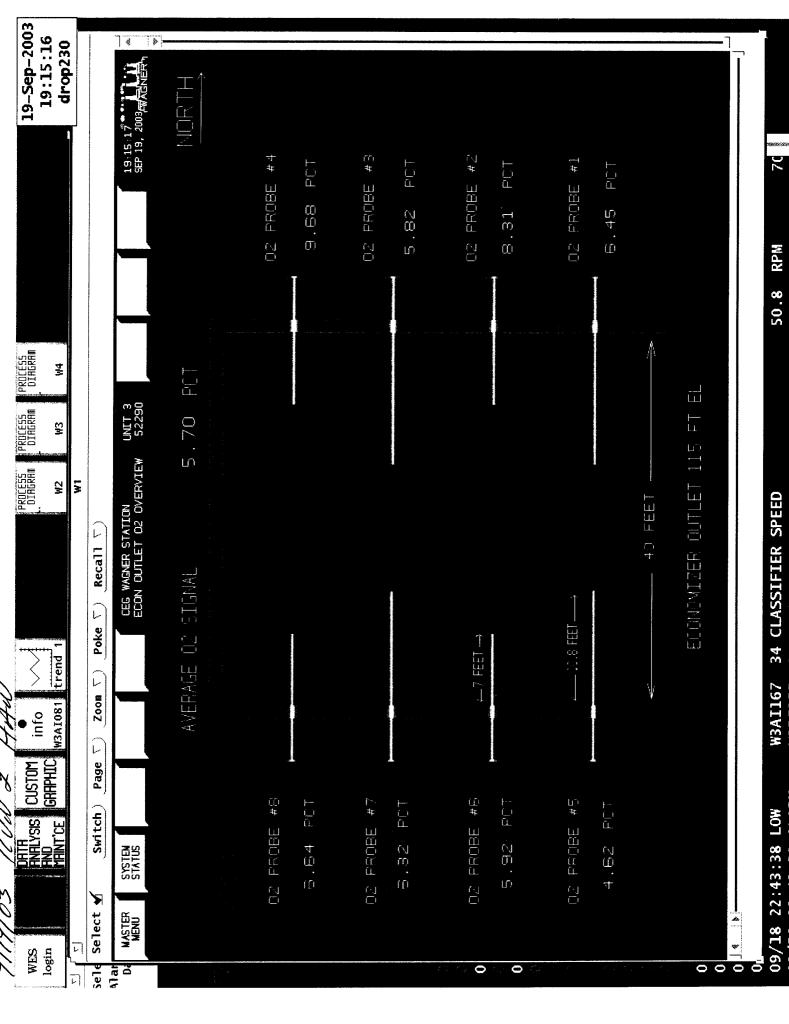

			_	<u></u>	<u></u> 6	0	ा	T =	m	l'C	10	4	ा	[7]	ത	~	~	œ	ल	ര	4	Īω	2	<u>ام</u>	<u></u>	4	ि	७	က	က	4	0	က	ī
Soot Blowing	Rec	psig	C2PT229	487	478.	470.0	473.0	484			482.0	475.4	471.0	480.2	473.9	479.	479.	472.8	484	477.	471.4	482.8	476.5	470.2	481.	475.	470.(480.6	474.	477.	479.	473.0	484.3	478.0
Soot	Нdг	psig	C2PT228	483.2	476.9	470.6	471.6	487.4	479.5	470.0	486.0	476.8	470.8	483.7	474.8	478.7	482.2	473.3	486.7	480.5	471.5	482.2	475.9	469.6	481.1	474.8	469.7	480.0	473.7	477.4	478.9	472.6	484.1	477.8
Bagh'se	ΔР	"h ₂ o	C2PT215	10.0	8.9	9.5	6.9	7.7	8.2	6.8	7.8	7.9	6.7	8.0	8.3	7.4	7.9	8.3	7.4	8.2	8.5	7.2	9.8	0.0	0.2	8.4	9.7	8.2	8.4	7.8	8.1	8.8	6.7	8.6
	22B	ton/hr	C2AI630	16.4	16.3	16.2	17.7	17.8	17.8	17.9	17.9	18.0	18.0	18.1	18.1	18.2	18.2	18.3	18.3	18.4	18.4	18.5	18.5	18.6	18.6	18.6	18.7	18.7	18.8	18.8	18.9	18.9	18.9	18.8
Flows	22A	ton/hr	C2AI620	17.3	17.2	17.2	17.3	17.3	17.3	17.3	17.3	17.3	17.3	17.4	17.4	17.4	17.4	17.4	17.4	17.4	17.4	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.6	17.6	17.6	17.6	17.6
Coal	21B	ton/hr	C2AI610	16.5	16.4	16.3	17.7	17.7	17.7	17.7	17.7	17.7	17.7	17.7	17.7	17.7	17.7	17.7	17.7	17.7	17.7	17.7	17.7	17.7	17.7	17.8	17.8	17.8	17.8	17.8	17.8	17.8	17.8	17.8
	21A	ton/hr	C2AI600	17.2	17.2	17.1	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.4	17.4	17.4	17.4	17.4	17.4	17.4	17.4	17.4	17.4	17.4	17.3	17.3	17.3	17.3	17.3	17.3	17.3	17.3	17.3	17.3
	22B	kpph	C2FT022	384.3	379.2	380.5	395.0	382.8	380.8	379.0	379.7	371.5	375.8	389.2	382.9	381.0	383.2	386.3	384.3	376.3	376.1	387.0	385.0	378.1	379.9	377.1	374.5	380.3	369.1	394.5	379.7	4007	388.4	395.7
Air Flows	22A	kpph	C2FT021	376.0	376.8	379.9	391.2	381.3	379.9	376.3	383.3	377.0	377.7	392.3	382.5	383.6	385.1	384.3	391.1	378.1	379.7	379.5	383.0	383.6	379.4	373.4	381.5	383.2	372.3	389.6	371.7	389.2	386.1	387.7
Cyclone Air Flows	21B	kpph	C2FT020	379.9	381.2	380.3	391.2	390.1	380.3	379.5	377.6	379.4	381.4	390.5	380.1	390.3	380.6	376.6	374.1	387.6	379.4	377.7	380.6	383.4	377.2	380.3	380.5	384.0	366.0	398.1	379.4	386.3	383.0	389.2
	21A	kpph	C2FT019	379.5	380.9	379.8	389.6	382.1	380.5	373.9	380.3	370.4	372.6	388.7	376.8	379.4	383.2	384.0	383.0	387.0	381.5	385.1	385.6	381.4	373.8	375.4	387.0	380.1	364.9	395.7	380.8	366.1	393.9	383.9
	Gas Out	deg F	C2TE351A	334.9	335.3	335.6	308.1	311.9	315.7	317.2	318.1	319.0	319.9	320.8	321.7	322.7	323.6	324.5	325.4	326.3	327.2	328.1	329.0	329.9	330.3	330.4	330.6	330.7	330.8	330.9	331.1	331.2	331.3	331.5
r Temps	Gas In	deg F	C2TE349	698.2	699.2	700.2	664.6	671.9	673.8	672.9	678.3	9.089	682.9	685.0	686.2	687.4	688.5	689.7	6.069	692.1		693.3	693.7	694.2	694.7	695.1	695.6	696.2	8.969	697.5	698.2	0.669	8.669	700.5
Air Heater Temps	Air Out	deg F	C2TE348	573.1	574.2	574.7	539.6	546.2	549.8	551.7	553.5		557.7	559.7	561.4	561.0	561.9	562.8	563.7	564.6	565.5	566.2	566.9	567.7	568.4	569.1	569.7	570.1	570.0	570.1	571.2	572.3	572.8	572.3
	Air In	deg F		92.6	95.8	96.0	84.4	83.7		82.8	83.1	83.3	83.6	83.9	84.2	84.4	84.7	85.0	85.2	85.5	85.8	86.0	86.3	9.98	86.8	87.1	87.4	87.7	87.9	88.2	88.2	88.2	88.3	88.3
Flue Gas	O ₂ (2 min	%	A85299C	2.94	2.94	2.94	2.92	2.92	2.92	2.92	2.93	2.93	2.93	2.93	2.94	2.94	2.94	2.94	2.95	2.95	2.95	2.95	2.95	2.96	2.96	2.96	2.96	2.97	2.97	2.97	2.97	2.98	2.98	2.98
	4	%	.0001X72	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.00	0.0	0.0	0.00	0.00	0.0	0.00	0.00	0.00	0.00	0.00
	Load	ŠΕ	C2.MW	206	206	206	202	203	202	203	203	204		204	.	205	205	205	206	206	206	206	206	206	206	205	205	205	205	_ [- 1		204	204
			Time		4/24/03 18:20	4/24/03 18:30	4/25/03 7:20	4/25/03 7:30	4/25/03 7:40	4/25/03 7:50	8	4/25/03 8:10		-	_	4/25/03 8:50	4/25/03 9:00	4/25/03 9:10	4/25/03 9:20	4/25/03 9:30	4/25/03 9:40	4/25/03 9:50	4/25/03 10:00	4/25/03 10:10	4/25/03 10:20	4/25/03 10:30	4/25/03 10:40	4/25/03 10:50	4/25/03 11:00	4/25/03 11:10 m	11:20	4/25/03 11:30 €		4/25/03 11:50

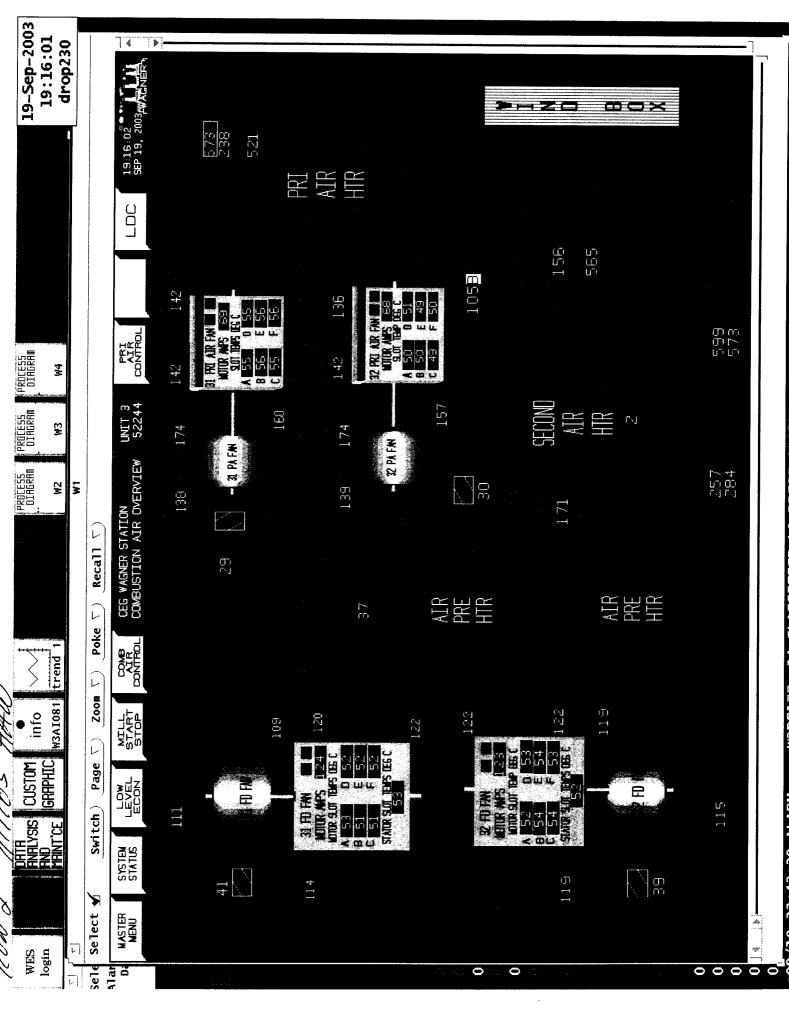

ina	Rec	psig	COPTOO	4716	483 1	476 A	470.6	482.1	475.9	469.7
Soot Blowing	_			\perp			470.4			469.5
L	I	psig	- ;:			_[ı			
Bagh'se	ΔP	"h ₂ 0	C2PT21	6.8	80					
	22B	ton/hr	C2A1630	18.8	18.7	187	186	186	18.6	18.5
lows	22A	ton/hr	C2A1620 C2A1630	17.6	17.6	17.6	17.7	17.7	17.7	17.7
Coal Flows	21B	ton/hr	C2AI610		17.8	17.8	17.8	17.8	17.8	17.8
	21A	ton/hr	C2AI600	17.3	17.3	17.2	17.2	17.2	17.2	17.2
	22B	kpph	C2FT022	389.7	383.9	388.6	389.9	382.7	382.7	387.0
vir Flows	22A	kpph	C2FT021	385.7	382.5	386.2	387.5	384.8	385.9	384.6
Cyclone Air Flows	21B	kpph	C2FT020 C2FT021	390.9	386.4	383.9	378.6	378.8	386.5	391.7
	21A	kpph			384.4	383.7	391.0	385.2	383.7	386.2
	Gas Out	deg F	:2TE351A	331.6	331.7	331.8	332.0	332.1	332.2	332.3
r Temps	Gas In Gas Out	deg F	C2TE349 C2TE351A C2FT019	701.3	701.4	701.5	701.6	7.107	701.8	701.9
Air Heater Temps	Air Out	deg F		572.3	572.4	572.5	572.7	572.8	573.1	573.4
	Air In	deg F	22TE347	88.3	88.3	88.3	88.3	88.3	88.3	88.3
Flue Gas	OFA O ₂ (2 min s	%	:.0001X72.A85299C C2TE347 C2TE348	2.98	2.99	2.99	2.99	2.99	3.00	3.00
	OFA C	%	0001X72	00.0	0.00	00.0	0.00	0.00	0.00	0.00
	Load	× ×	C2.MW	204	204	204	204	3 205	205	205
•			Date & Time	4/25/03 12:00	4/25/03 12:10	4/25/03 12:20	4/25/03 12:30	4/25/03 12:40	4/25/03 12:50	4/25/03 13:00

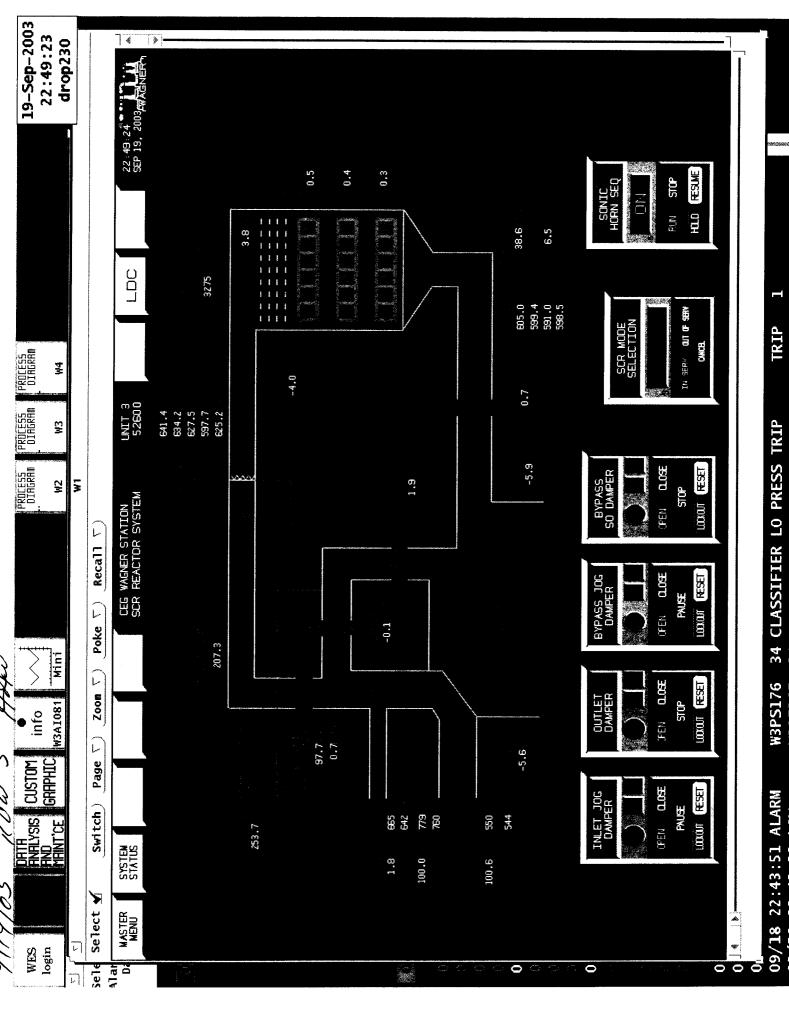

APPENDIX C.3 WAGNER STATION DATA CAMPAIGN TWO

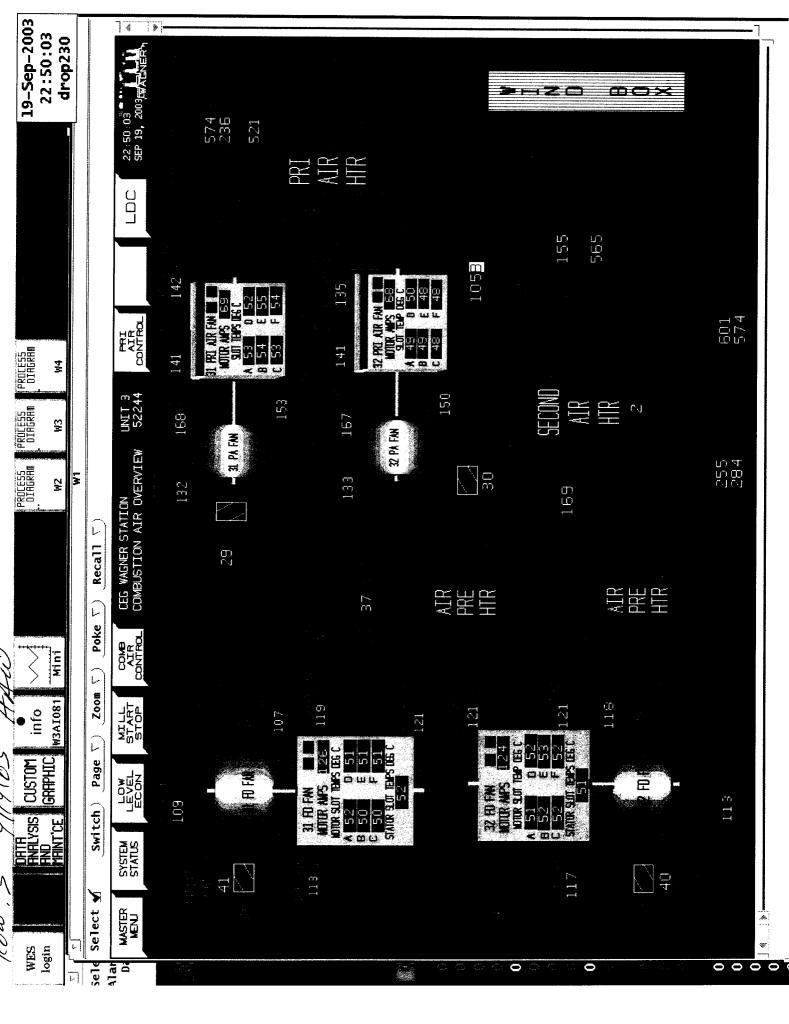


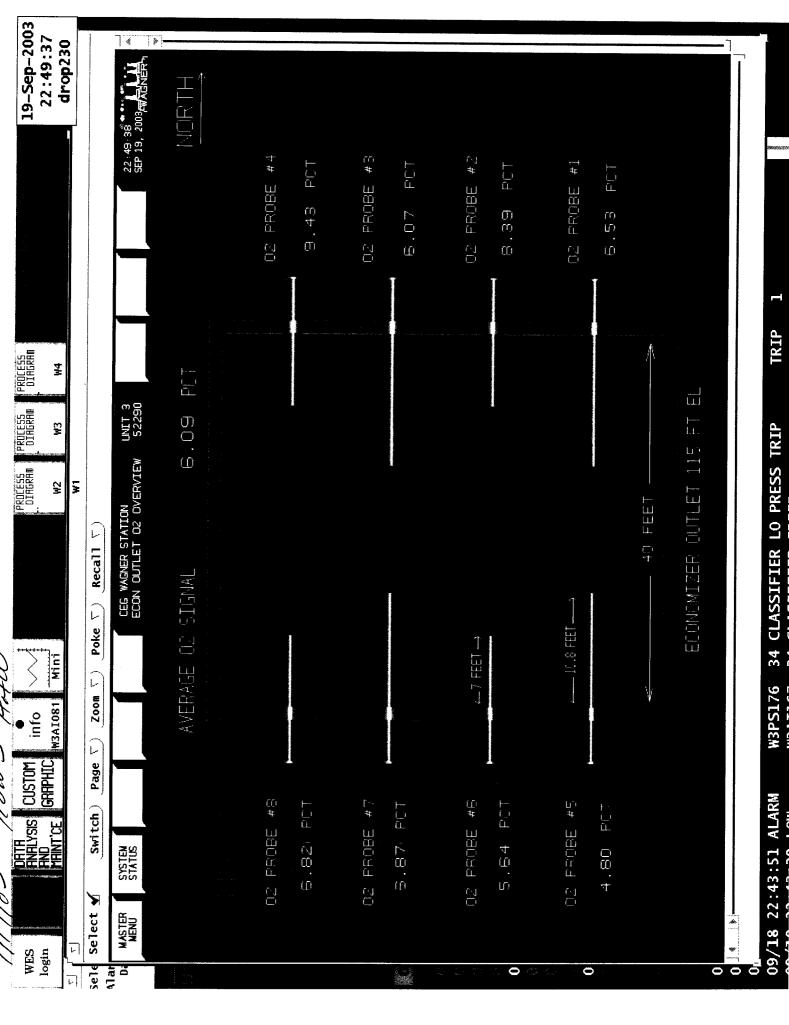


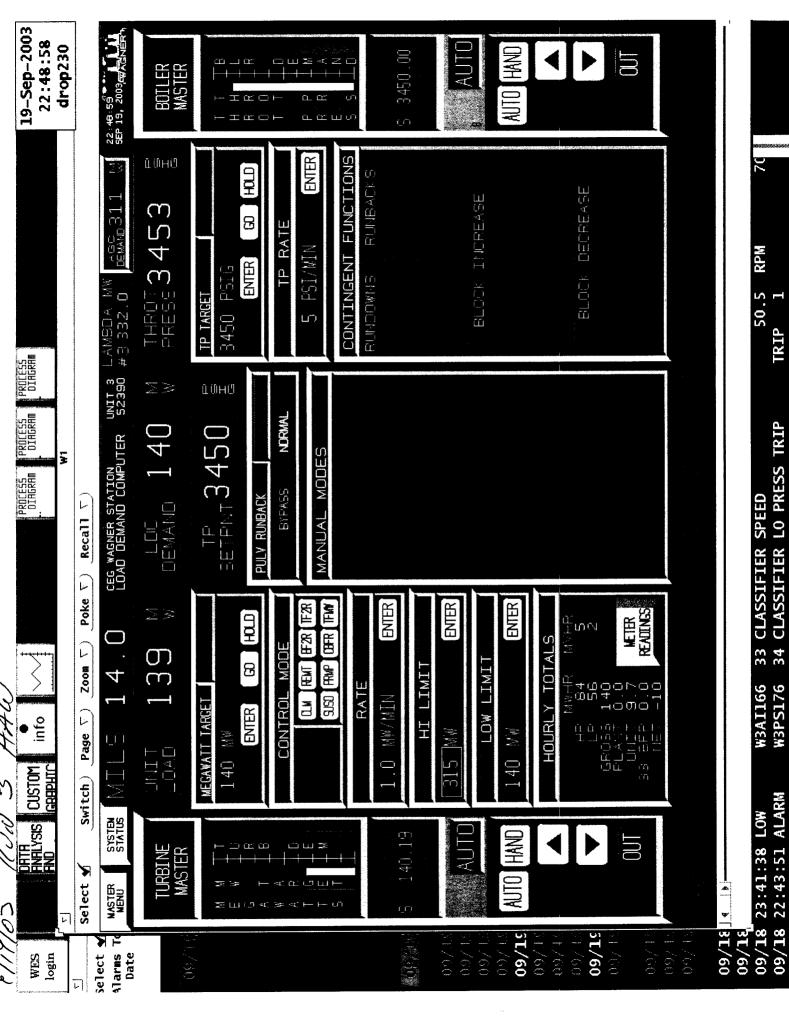


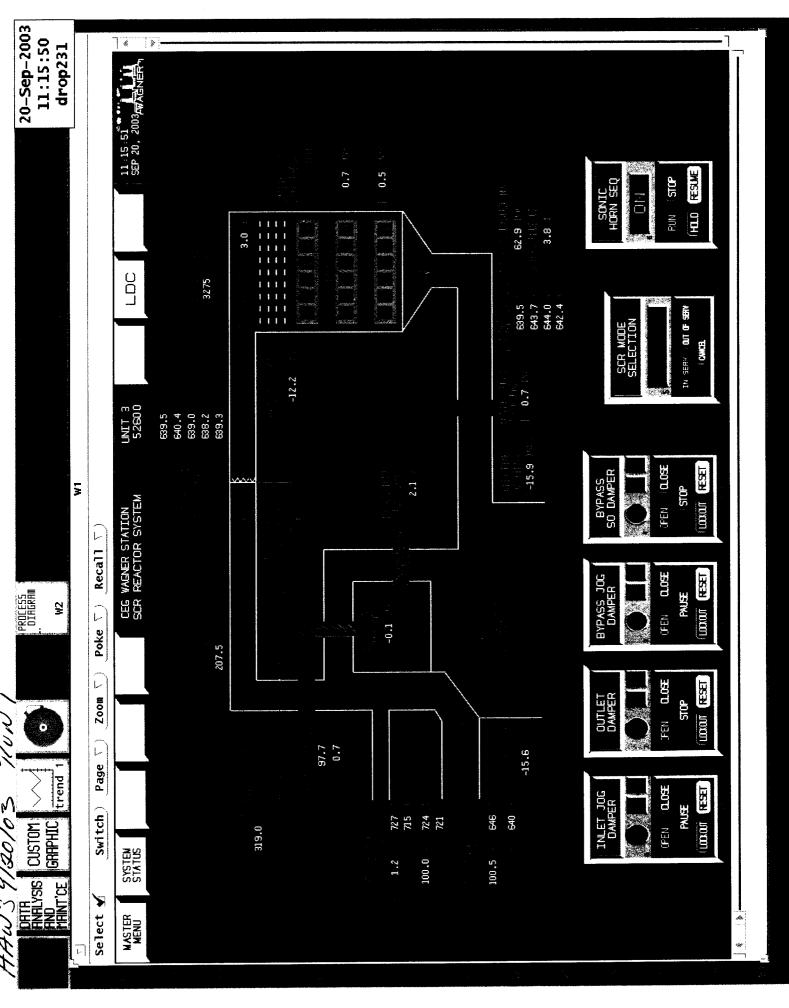


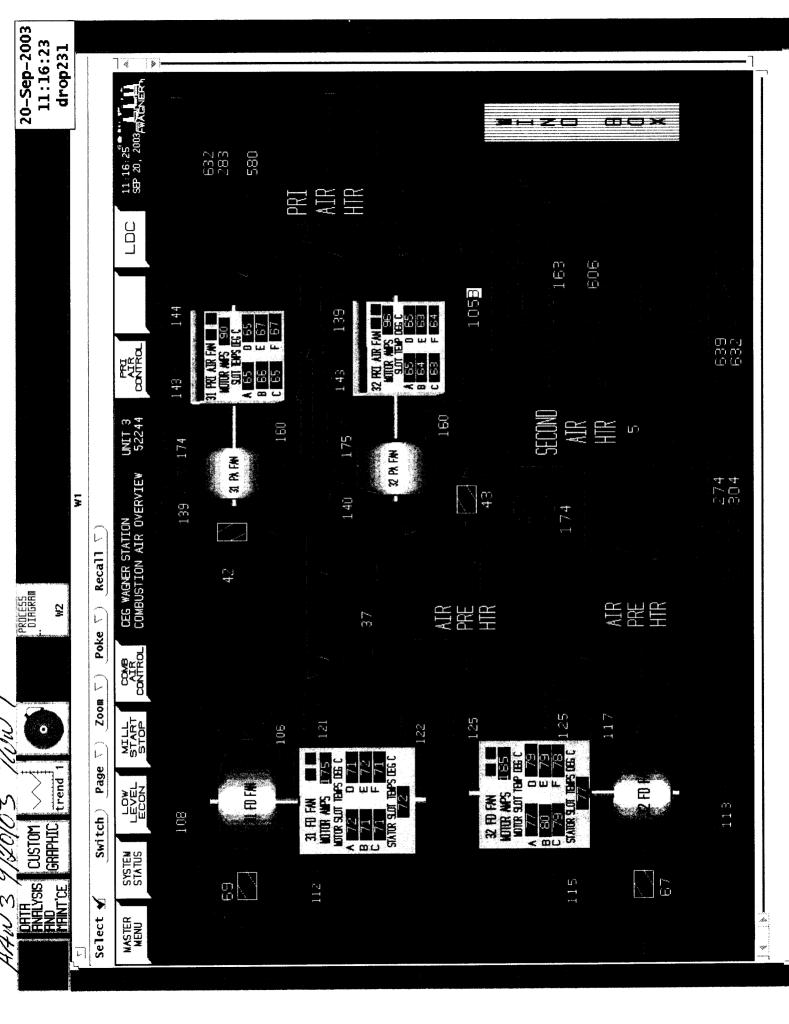


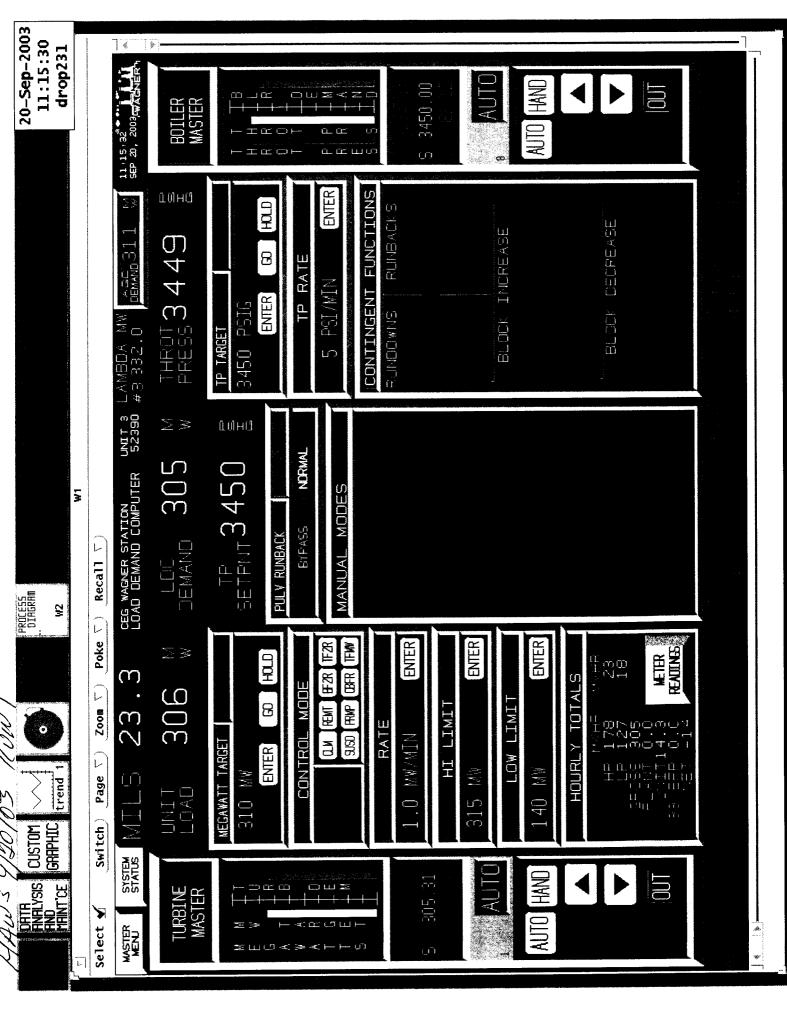


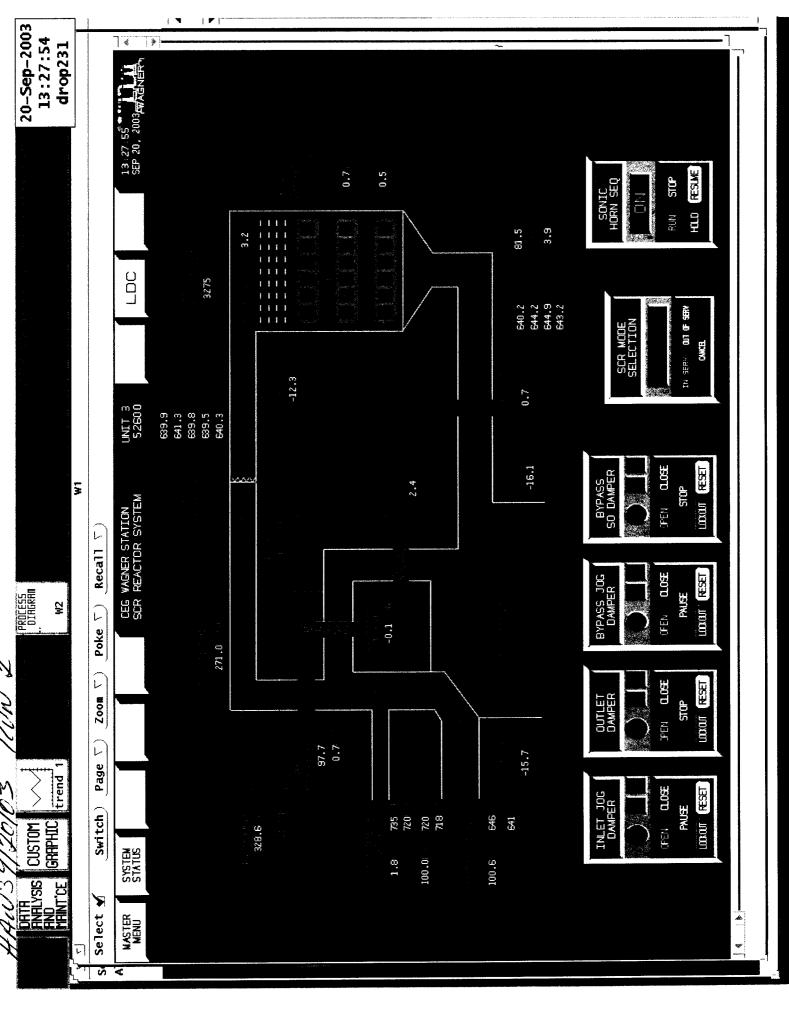


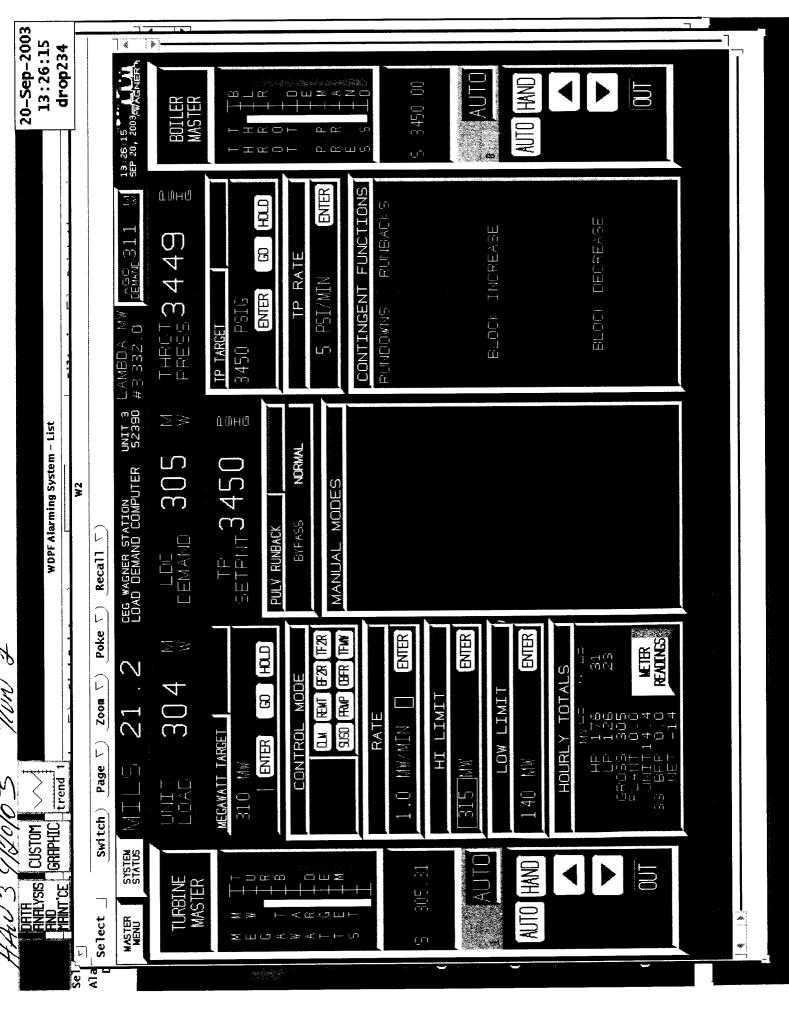


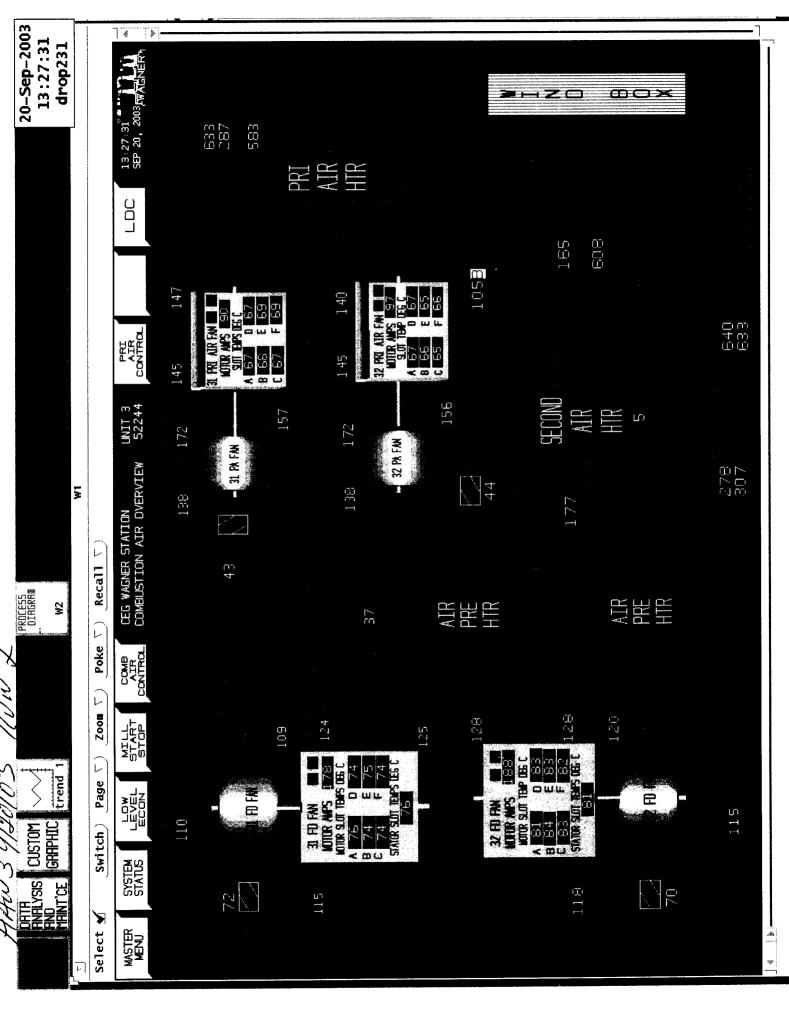


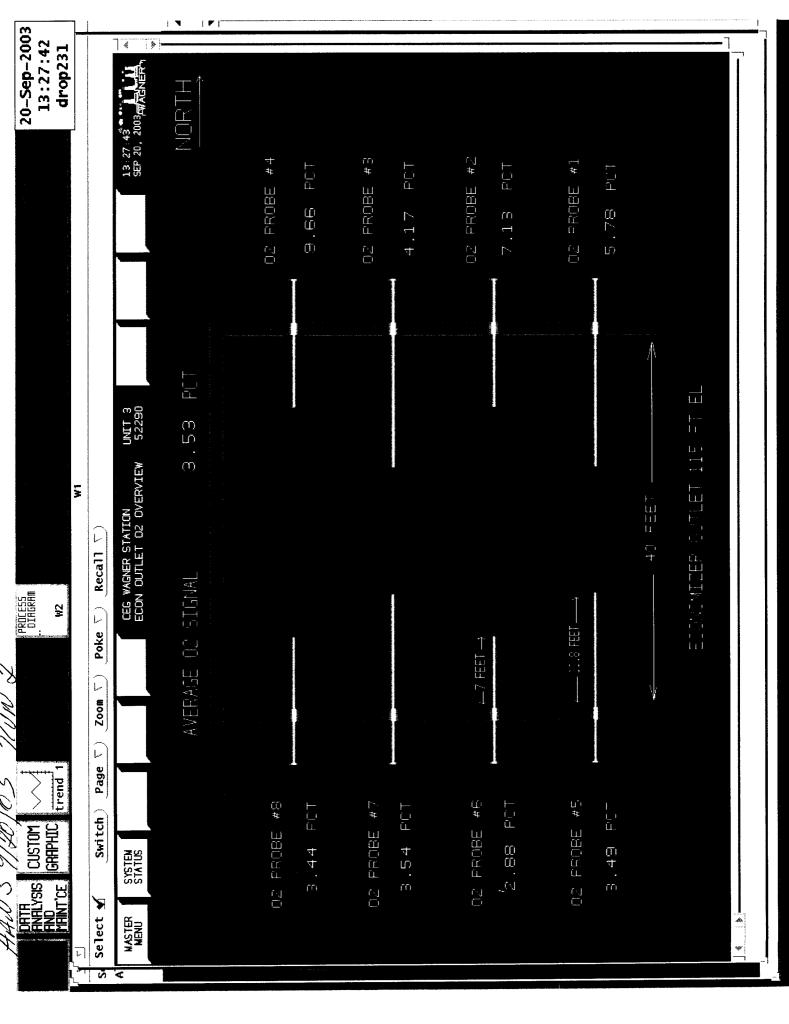


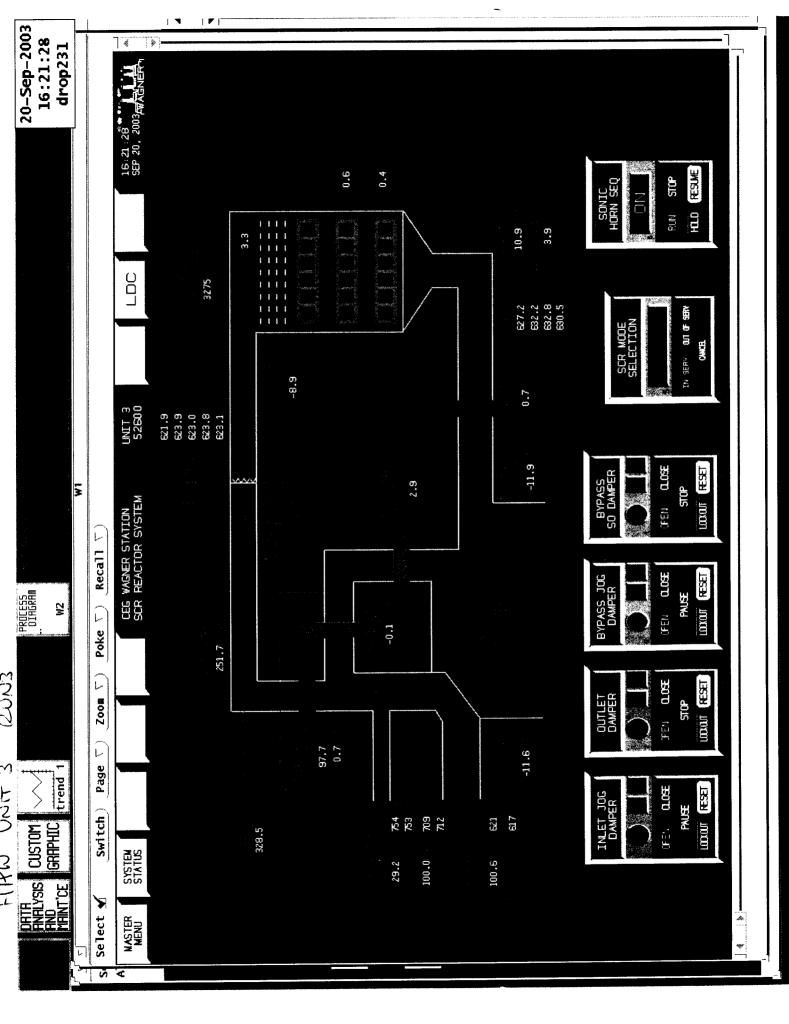


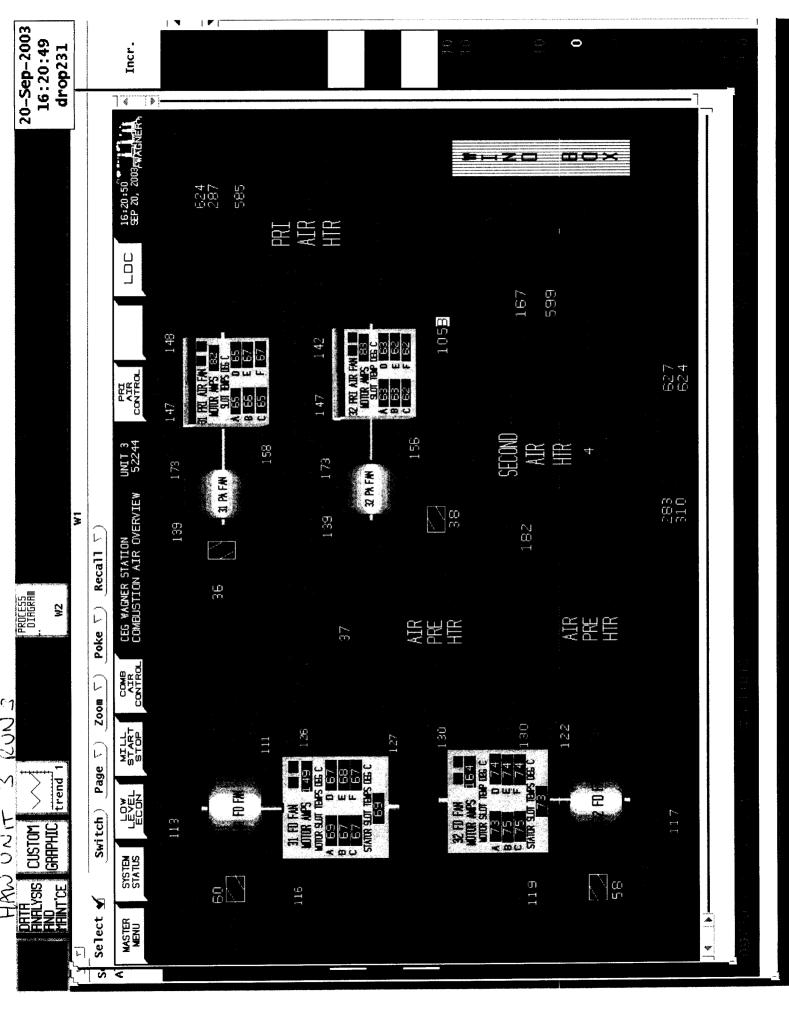


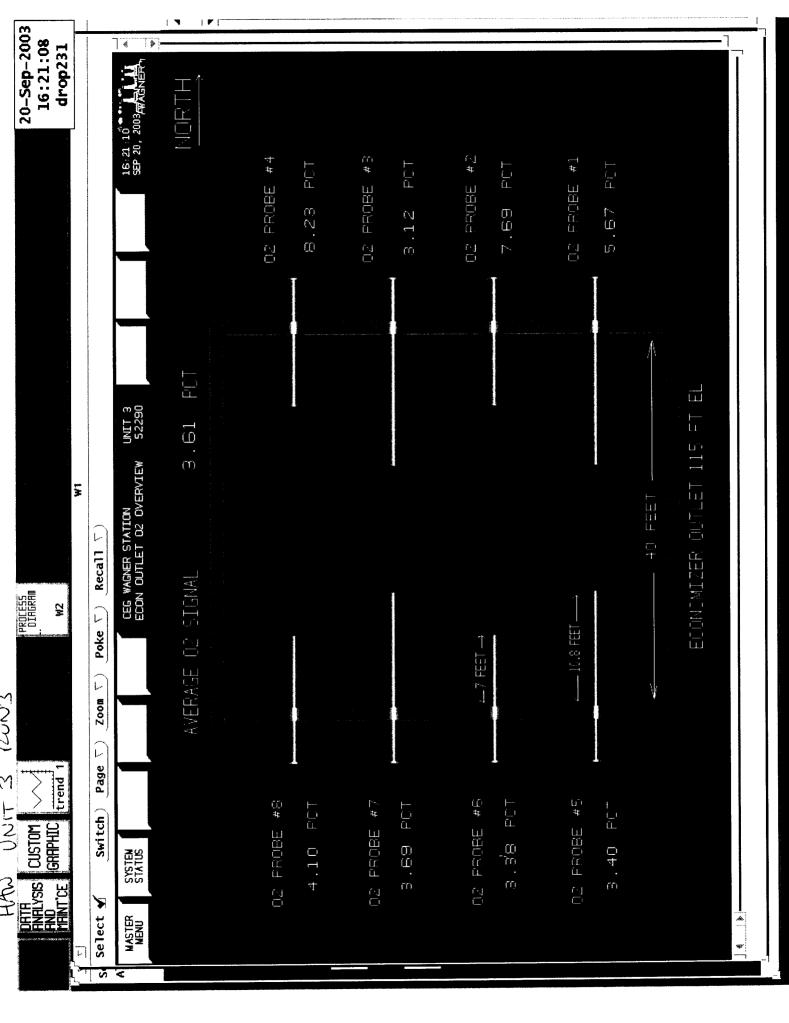


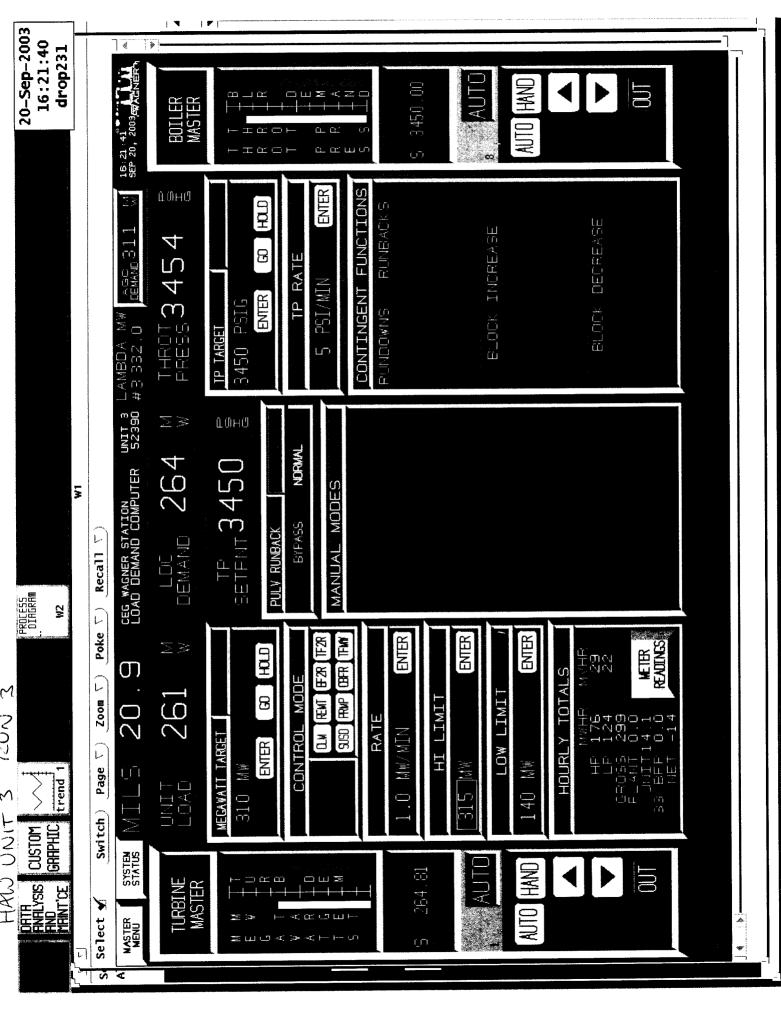












General Average Report

Reporting Period: 09/20/2003 to 09/20/2003

Site Name: UNIT3

Time of Report: 09/21/03 06:34

Data Averaging Type: 6m

Rolling Average Interval: 1

		MW_P60
Date	Time	(MW)
09/20/03	10:30	305.83
	10:36	305.01
	10:42	305.16
	10:48	305.34
	10:54	305.00
	11:00	306.17
	11:06	305.01
	11:12	305.49
	11:18	305.99
	11:24	305.01
	11:30	305.17
	11:36	305.32
	11:42	305.01
	11:48	305.33 🖒
	11:54	305.00
	12:00	305.00
	12:06	305.83
	12:12	305.00
	12:18	305.16
	12:24	305.84
	12:30	304.83
	12:36	305.17
	12:42	305.16
	12:48	305.50
	12:54	305.34
	13:00	305.66
	13:06	305.34
	13:12	305.00
	13:18	305.33
	13:24	305.33
	13:30	304.99
	13:36	306.00
	13:42	306.17
	13:48	304.50
	13:54	305.17
	14:00	305.17
	14:06	305.50
	14:12	305.01
	14:18	305.16
	14:24	305.66 (V
	14:30	305.34
	14:36	305.33 ე
	14:42	304.84
	14:48	304.83
	14:54	295.40
	15:00	262.76
	15:06	256.51
	15:12	257.51
	15:18	260.14
	15:24	261.84 🖟

General Average Report

Reporting Period: 09/20/2003 to 09/20/2003

Site Name: UNIT3

Time of Report: 09/21/03 06:34

Data Averaging Type: 6m

Rolling Average Interval: 1

		MW_P60
Date	Time	(MW)
09/20/03	15:30	259.86∫
	15:36	260.29
	15:42	262.30
	15:48	264.00
	15:54	263.85
	16:00	262.67
	16:06	262.67
	16:12	263.01
	16:18	262.00
	16:24	262.33
	16:30	255.44
	16:36	240.96
	16:42	227.45
	16:48	218.22
	16:54	204.27
	17:00	204.45
	17:06	208.20
	17:12	205.48
	17:18	207.69
	17:24	205.78
	17:30	206.56
	17:36	206.42
	17:42	206.42
	17:48	206.59
	17:54	206.57
	18:00	206.76
	18:06	206.23

10:00 200.25/

Average = 276.28
Maximum = 306.17
Minimum = 204.27

Possible Values = 77

Included Values = 77

Total = 21273.62

- excluded values (missing, OOC, invalid, suspect)
- < missing
- T out-of-control
- I invalid
- S suspect
- H exceedance
- F stack not operating
- B invalid (PADER)
- U missing data substituted
- -999 missing value
- -888 value could not be calculated

APPENDIX D

COAL AND ASH LABORATORY ANALYSES:

- D.1 BRANDON SHORES CAMPAIGN ONE
- D.2 CRANE STATION CAMPAIGN ONE
- D.3 WAGNER STATION CAMPAIGN ONE
- D.4 CAMPAIGN TWO: BRANDON SHORES AND WAGNER

APPENDIX D.1 BRANDON SHORES COAL AND ASH ANALYSES CAMPAIGN ONE

FROM : SGS-BALTIMORE

June 11, 2003

ADDRESS ALL CORRESPONDENCE TO: COMMERCIAL TESTING & ENGINEERING CO. 1501-A EAST PATAPSCO AVENUE BALTIMORE. MD 21:28 TEL: (410) 355-1958 FAX: (410) 355-1865 Sample identification by Yourselves

Constellation Energy Group Fort Smallwood Complex 1000 Brandon Shores Road Baltimore, MD 21226

Sample ID:

BRANDON SHORES

Unit #1 RUN 2 4/22/03

MATOUSAX

kind of sample Coal reported to us

Sample taken at BRANDON SHORES

Sample taken by Yourselves

Date sampled April 22, 2003

Date received April 28, 2003

Analysis Report No. 86-10675-55

PROXIMATE ANALYSIS	As Received	Dry Basis	ULTIMATE ANALYSIS	As Received	Dry Basis
<pre>% Moisture % Ash % Volatile % Fixed Carbon</pre>	7.20 11.23 ******* ****** 100.00	****** 12.10 ***** ***** ***** 100.00	<pre>% Moisture % Carbon % Hydrogen % Nitrogen % Sulfur % Ash</pre>	7.20 69.04 4.15 1.29 0.66 11.23	74.40 4.47 1.39 0.71 12.10
Btu/lb % Sulfur MAF Btu	12189 V 0.66	13135 0.71 14943	% Oxygen(diff)	6.43 100.00	6.93 100.00

MEMBER

Respectfully submitted, COMMERCIAL YESTING & ENGINEERING CO.

Baltimore Laboratory

FROM :SGS-BALTIMORE

FAX NO. :4103551965

Jul. 03 2003 10:46AM P2

June 27, 2003

Constellation Energy Group Fort Smallwood Complex 1000 Brandon Shores Road Baltimore, MD 21226

ADDRESS ALL CORRESPONDENCE TO: COMMERCIAL TESTING & ENGINEERING CO. 1501-A EAST PATAPSCO AVENUE BALTIMORE, MD 21226 TEL: (410) 355-1958 FAX: (410) 365-1066

Sample identification by

Yourselves

Kind of sample reported to us

Sample taken at BRANDON

Sample taken by Yourselves

Date sampled

Date received June 13, 2003

Brandon Shores

Unit #1 Run 1

EMISSION STRATEGIES

SHEILA GLESMAN

Analysis report no. 86-10735-02

PARAMETER

RESULTS ppm

Mercury, Hg

0.09 ppm

Respectfully submitted, COMMERCIAL TESTING & ENGINEERING CO.

Baltimore Laboratory

Characteristic Testing & Engineering Co. | Minorals Services - Corporate Office

1919 S. Highland Ave., Suite 210B, Lombord, II. 60148 1 (630) 953-9300 1 (630) 953-9306 www.sgs.com

Constellation Energy Group Fort Smallwood Complex 1000 Brandon Shores Road Baltimore, MD 21226

ASH Kind of sample reported to us

Sample taken at BRANDON

Yourselves Sample taken by

Date sampled

Date received May 21, 2003

ADDRESS ALL CORRESPONDENCE TO: COMMERCIAL TESTING & ENGINEERING CO. 1501-A EAST PATAPSCO AVENUE BALTIMORE. MD 21220 TEL: (410) 355-1958 FAX: (410) 355-1966

Sample identification by Yourselves

ASH B1 RUN 1 NORTH

EMISSION STRATEGIES

SHEILA GLESMAN/STEVE MATOUSEK

86-10701-25 Analysis report no.

PARAMETER

RESULTS DPM

Mercury, Hg

<0.04 ppm

Lose on Ignition

10.65 %

Respectfully submitted, COMMERCIAL TESTING & ENGINEERING CO.

Battimore Laboratory

Communical testing & Engineering Fac | Minerals Services | Corporate Office

410 248 8652

1919 S. Highland Ava., Suite 2108. Lombard IL 60148 (630) 953-9300 (630) 953-9306 www.sqs.com

Momber of the 383 Group (Societé Générale de Survaillance)

TERMS AND CONDITIONS ON REVERSE

F-465

Constellation Energy Group Fort Smallwood Complex 1000 Brandon Shores Road Baltimore, MD 21226

kind of sample reported to us

Sample taken at BRANDON

Sample taken by Yourselves :

Date sampled

Date received May 21, 2003

ADDRESS ALL CORRESPONDENCE TO: COMMERCIAL TESTING & ENGINEERING CO. 1501-A EAST PATAPSCO AVENUE BALTIMORE, MO 21 228 TEL: (110) 355-1959 EAV. (110) 355-1959 FAX: (410) 355-1965

Sample identification by Yourselves

ASH Вı RUN 1 SOUTH

EMISSION STRATEGIES

SHEILA GLESMAN/STEVE MATOUSEK

86-10701-26 Analysis report no.

RESULTS ppm

Mercury, Hg

PARAMETER

<0.04 ppm

Loss on Ignition

9.12 %

MEMBER

Respectfully submitted, COMMERCIAL TESTING & ENGINEERING CO.

Commercial festing & Engineering Co. | Minerals Services - Corporate Office

19]9 S. Highland Avo., Suite 2108, Lomberd, N. 60140 1 (630) 953-9300 1 (630) 953-9300 www.sgs.com

Member of the SGS Group (Sectore Générale de Surveillerere)

TERMS AND CONDITIONS ON REVERSE

Constellation Energy Group Fort Smallwood Complex 1000 Brandon Shores Road Baltimore, MD 21226

ADDRESS ALL CORRESPONDENCE TO: COMMERCIAL TESTING & ENGINEERING CO. 1501-A EAST PATAPSCO AVENUE BALTIMORE, MO 21226 TEL: (410) 355-1958 FAX: (410) 366-1965

Sample identification by Yourselves

Kind of sample

reported to us

Sample taken at BRANDON

Sample taken by Yourselves

Date sampled

Date received May 21, 2003

ASH Bl

RUN 2 NORTH.

EMISSION STRATEGIES

SHEILA GLESMAN/STEVE MATOUSEK

86-10701-27 Analysis report no.

RESULTS ppm

Mercury, 'Hg

PARAMETER

<0.04 ppm

Loss on Ignition

9.96 \$

MEMBER

Respectfully submitted. COMMERCIAL TESTING & ENGINEERING CO.

Commercial Tenting & Engineering Co. | Minerals Services - Corporate Office

1919 S. Highland Ave., Suite 210B, Lombard, IL 60140 (630) 953-9300 (630) 953-9306 www.sps.com

Member at the SAR Group (Sociate Sentente de Survellenne)

TERMS AND CONDITIONS ON SELECTE

11405

Constellation Energy Group Fort Smallwood Complex 1.000 Brandon Shores Road Baltimore, MD 21226

ASH Kind of sample reported to us

Sample taken at BRANDON

Yourselves Sample taken by

Date sampled

Date received May 21, 2003

ADDRESS ALL CORRESPONDENCE TO: COMMERCIAL TESTING & ENGINEERING CO. 1601-A EAST PATAPSCO AVENUE BALTIMORE, MD 21226 TEL: (410) 365-1958 FAX: (410) 365-1865

Sample identification by Yourselves

ASH Bl RUN 2 SOUTH

EMISSION STRATEGIES

SHEILA GLESMAN/STEVE MATOUSEK

Analysis report no.

86-10701-28

PARAMETER

RESULTS ppm

Mercury, Hg

<0.04 ppm

Loss on Ignition

8.16

Rospectfully aubmitted. COMMERCIAL TESTING & ENGINEERING CO.

Communical Testing & Logineering Co. | Minérals Services - Corporate Office

1919 S. Highland Ave., Suite 2108, Lembard, IL 60148 (530) 953-9300 (1630) 953-9306 www.sgs.com

Member of the SDS Group (Société Générale de Survallience)

TERMS AND CONDITIONS ON PRIVERSE

Constellation Energy Group Fort Smallwood Complex 1000 Brandon Shores Road Baltimore, MD 21226

Kind of sample ASH reported to us

Sample taken at BRANDON

Sample taken by Yourselves

Date sampled

Date received May 21, 2003

ADDRESS ALL CORRESPONDENCE TO: COMMERCIAL TESTING & ENGINEERING CO.

1501-A EAST PATAPSCO AVENUE
BALTIMORE, MD 21226
TEL: (410) 355-1950
FAX: (410) 366-1985

Sample identification by Yourselves

ASH B1 RUN 3 NORTH

EMISSION STRATEGIES

SHEILA GLESMAN/STEVE MATOUSEK

Analysis report no.

86-10701-29

PARAMETER

RESULTS DEM

Mercury, Hg

<0.04 ppm

Loss on Ignition

9.40 %

Respectfully submitted. COMMERCIAL TESTING & ENGINEERING CO.

Baltimore Laboratory

Compared of the Compared Office | Minerals Services - Corporate Office

1910 S. Highland Ave., Suite 210B, Lombard, IL 60148 (830) 953-9300 (630) 953-9306 www.ays.com

TERMS AND CONDITIONS ON DEVEN

Moreiter of the SGS Group (Soulded Getterein de Surveillenun)

Constellation Energy Group Fort Smallwood Complex 1000 Brandon Shores Road Baltimore, MD 21226

Kind of sample **ASH** reported to us

Sample taken at BRANDON

Sample taken by Yourselves

Date sampled

Date received May 21, 2003

ADDRESS ALL CORRESPONDENCE TO: ADDRESS ALL COMMERCIAN CO.

COMMERCIAL TESTING & ENGINEERING CO.

1601-A EAST PATAPSCO AVENUE

BALTIMORE, MD 21226

TEL: (410) 355-1950

FAX: (410) 365-1965

Sample identification by

Yoursclves

ASH B1 RUN 3 SOUTH

EMISSION STRATEGIES

SHEILA GLESMAN/STEVE MATOUSEK

Analysis report no.

86-10701-30

PARAMETER

RESULTS ppm

Mercury, Hg <0.04 ppm

Loss on Ignition

7.92 %

WEMBER

Respectfully submitted, COMMERCIAL TESTING & ENGINEERING CO.

Baltimore Laboratory

Commercial Testing & Engineering Co. | Minorals Services - Corporate Office

1919 \$. Highland Ave., Suito 2108, Lombard, ft. 60148 | t |630) 953-8300 | f |630| 953-9306 | www.sgs.com

Member of the SRS Group (Société Générale de Survellianue)

TERMS AND CONDITIONS ON REVERSE

FROM :SGS-BALTIMORE

June 11, 2003

Constellation Energy Group Fort Smallwood Complex 1000 Brandon Shores Road Baltimore, MD 21226

Kind of sample Coal

reported to us

Sample taken at BRANDON SHORES

Sample taken by Yourselves

Date sampled April 17, 2003

Date received April 28, 2003

ADDRESS ALL CORRESPONDENCE TO: COMMERCIAL TESTING & ENGINEERING CO. 1501-A EAST PATAPSCO AVENUE RALTIMORE, MD 21726 TEL: (410) 355-1968 FAX: (410) 356-1966

Sample identification by

Yourselves

Sample ID:

BRANDON SHORES

Unit #2 RUN 2 4/17/03

MATOUSAK

86-10675-52 Analysis Report No.

PROXIMATE ANALYSIS	As Received	Dry Basis	ULTIMATE ANALYSIS	As Received	Dry Basis
% Moisture % Ash % Volatile % Fixed Carbon	7.58 12.32 xxxxx xxxx 100.00	XXXXX 13.33 XXXXX XXXX 100.00	% Moisture % Carbon % Hydrogen % Nitrogen % Sulfur % Ash	7.58 67.24 4.03 1.23 0.67 12.32	72.75 4.36 1.33 0.72 13.33
Btu/lb % Sulfur MAF Btu	11899 V 0.67	12875 0.72 14855	% Oxygen(diff)	6,93 100,00	$\frac{7.51}{100.00}$

Respectfully submitted, COMMERCIAL TESTING & ENGINEERING CO.

lun **Baltimore Laboratory**

Constellation Energy Group Fort Smallwood Complex 1000 Brandon Shores Road Baltimore, MD 21226

Kind of sample ASH reported to us

Sample taken at BRANDON

Sample taken by Yourselves

Date sampled

Date received May 21, 2003

ADDRESS ALL CORRESPONDENCE TO COMMERCIAL TESTING & ENGINEERING CO. 1501-A EAST PATAPSCO AVENUE BALTIMORE, MD 21228 TEL: (410) 356-1958 FAX: (410) 355-1965

Sample identification by Yourselves

ASH **B**2 RUN 1

NORTH

EMISSION STRATEGIES

SHEILA GLESMAN/STEVE MATOUSEK

Analysis report no. 86-10701-19

PARAMETER	RESULTS ppm
Mercury, Hg	0.04 ppm
Loss on Ignition	2.47 *

VEMBER

Respectfully submitted, COMMERCIAL TESTING & ENGINEERING CO.

Bultimore Laboratory

Commercial Testing & Engineering Co. | Minerals Services!- Corporate Office

1933 S. Highland Ave., Suite 2108, Lombard, II. 60148 1 (630) 953-9300 1 (630) 953-9308 www.sps.com

Mambur of the SGS Group (Sealett Generals de Surveillance)

Constellation Energy Group Fort Smallwood Complex 1000 Brandon Shores Road Baltimore, MD 21226

ADDRESS ALL CORRESPONDENCE TO: COMMERCIAL TESTING & ENGINEERING CO. 1501-A EAST PATAPSCO AVENUE BALTIMORE. MD 21286 TEL: (410) 355-1950 FAX: (410) 366-1965

Sample identification by Yourselves

Kind of sample ASH reported to us

Sample taken at BRANDON

Sample taken by

Yourselves

Date sampled

Date received May 21, 2003

ASH

B2

RUN 1 SOUTH

EMISSION STRATEGIES

SHEILA GLESMAN/STEVE MATOUSEK

Analysis report no.

86-10701-20

PARAMETER

RESULTS ppm

Mercury, Hg

. 0.05 ppm

Loss on Ignition

11.00 %

MEMBER

Respectfully submitted. COMMERCIAL TESTING & ENGINEERING CO.

Baltimore Laboratory

Communication (running & Lagunsering Co. | Minerals Services - Corporate Office

1919 S. Hilghland Avo., Svite 2108, Lombard, H. 60148 1 (630) 953-1300 1 (630) 183-9308 www.sgs.com

Member of tim SRS Group (Société Ganéralo de Surveillance)

F-166

TERMS AND CONDITIONS ON DEVENEE

uəspuəns dis:50 60 50 mut

Constellation Energy Group Fort Smallwood Complex 1000 Brandon Shores Road Baltimore, MD 21226

Kind of sample ASH reported to us

Sample taken at BRANDON

Sample taken by Yourselves

Date sampled -----

Date received May 21, 2003

ADDRESS ALL CORRESPONDENCE TO: COMMERCIAL TESTING & ENGINEERING CO. 1501-A EAST PATAPECO AVENUE BALTIMORE, MD 21226 TEL: (410) 365-1858 FAX: (410) 366-1865

Sample identification by Pourselves

ASH B2 RUN 2

NORTH

EMISSION STRATEGIES

SHEILA GLESMAN/STEVE MATOUSEK

Analysis report no. 86-10701-21

RESULTS ppm

<0.04 ppm

Loss on Ignition

PARAMETER

Mercury, Hg

2.09 %

COMMERCIAL TESTING & ENGINEERING CO.

Communicati Tresting & Engineering Co. | Minerals Services | Corporate Office

1919 S. Highland Ave., Suite 2108, Lombard, IL 60148 (630) 953-9300 (1630) 953-9306 www.egs.com

TERMS AND CONDITIONS ON REVERSE

Mamber of the SGS Grapp (Societé Générale de Servallance)

Constellation Energy Group Fort Smallwood Complex 1000 Brandon Shores Road Baltimore, MD 21226 ADDRESS ALL CORRESPONDENCE TO: COMMERCIAL TESTING & ENGINEERING CO. 1501-A EAST PATAPSCO AVENUE BALTIMORE, MD 21228 TEL. (410) 355-1958 FAX: (410) 355-1985

Sample identification by Yourselves

Kind of sample ASH reported to us

Sample taken at BRANDON

Sample taken by Yourselves

Date sampled

Date received May 21, 2003

ASH B2 RUN 2 SOUTH

EMISSION STRATEGIES

SHEILA GLESMAN/STEVE MATOUSEK

Analysis report no. 86-10701-22

PARAMETER

RESULTS ppm

Mercury, Hg

0.05 ppm

Loss on Ignition

9.79 %

ACIL

Respectfully submitted, COMMERCIAL TESTING & ENGINEERING CO.

Baltimore Laboratory

Compared at Treating & Lyppoconing Co. | Minerals Services - Corporate Office

1919 S. Highland Ave., Suita 2100, Lombard, II 66148 1 (630) 963-9360 1 (630) 953-9306 www.sgs.com

Member of the SSS Group (Società Generale de Surveillence)

: TERMS AND CONDITIONS ON REVERSE

£468

FROM : SGS-BALTIMORE

June 2, 2003

Constellation Energy Group Fort Smallwood Complex 1000 Brandon Shores Road . Baltimore, MD 21226

Kind of sample ASH reported to us

Sample taken at BRANDON

Sample taken by Yourselves

Date sampled

Date received May 21, 2003

ADDRESS ALL CORRESPONDENCE TO: COMMERCIAL TESTING & ENGINEERING CO. 1501-A EAST PATAPSCO AVENUE BALTIMORE, MO 21226 TEL: (410) 355-1958 FAX: (410) 355-1965

Sample identification by Yourselves

ASH **B**2 RUN 3

NORTH

EMISSION STRATEGIES

SHEILA GLESMAN/STEVE MATOUSEK

Analysis report no. 86-10701-23

PARAMETER RESULTS DOM Mercury, Hg <0.04 ppm 3.72 % Loss on Ignition

Respectfully submitted,
COMMERCIAL TESTING & ENGINEERING CO.

uaspuans

Ballimoro Laboratory

Commercial Testing & Engineering Co. | Minerals Services - Corporate Office

1819 S. Highland Ave., Suite 2108, Lambard, IL 60140 | c (630) 983-9300 | f (630) 953-9306 | www.sgs.com

Member of the 669 Group (Seciáté Rándrele de Surveiljunce)

+1.q

TERMS AND CONDITIONS ON DEVERSE

SGS

June 2, 2003

Constellation Energy Group Fort Smallwood Complex 1000 Brandon Shores Road Baltimore, MD 21226 ADDRESS ALL CORRESPONDENCE TO: COMMERCIAL TESTING & ENGINEERING CO. 1601-A EAST PATAPSCO AVENUE BALTIMORE, MD 21226 TEL: (410) 955-1958 FAX: (410) 355-1965

Sample identification by Yourselves

Kind of sample ASH reported to us

Bample taken at BRANDON

Sample taken by Yourselves

Date sampled

Date received May 21, 2003

ASH B2 RUN 3 SOUTH

EMISSION STRATEGIES

SHETLA GLESMAN/STEVE MATOUSEK

Analysis report no.

86-10701-24

PARAMETER

RESULTS ppm

Mercury, Hg

0.05 ppm

Loss on Ignition

12.19 %

ACIL

Respectfully submitted, COMMERCIAL TESTING & ENGINEERING CO.

Ballimorn Laboratory

Communical Testing & Engineering Co. | Minerals Services - Corporate Office

1919 S. Highland Ave., Suite 2100, Lombard, IL 60148 (630) 963-9300 (1630) 963-9306 www.sgs.com

Member of the SRS Broup (Rociété Générale de Surveitance)

F-495

TERMS AND CONDITIONS ON REVERSE

APPENDIX D.2 CRANE STATION COAL AND ASH ANALYSES CAMPAIGN ONE

ADDRESS ALL CORRESPONDENCE TO: COMMERCIAL TESTING & ENGINEERING CO. 1501-A EAST PATAPSCO AVENUE BALTIMORE. MD 21226 TEL: (410) 355-1958 FAX: (410) 355-1986

June 2, 2003

Constellation Energy Group Fort Smallwood Complex . 1000 Brandon Shores Road Baltimore, MD 21226

Kind of sample COAL

__._-

reported to us

Sample taken at CRANE

Sample taken by Yourselves

Date sampled

Date received May 21, 2003

Yourselves

Sample identification by

COAL

C1-COAL-0417

EMISSION STRATEGIES

SHEILA GLESMAN/STEVE MATOUSEK

Analysis report no.

86-10701-37

PARAMETER

RESULTS DOM

Mercury, Hg

0.26 ppm

Respectfully submitted, COMMERCIAL TESTING 8 ENGINEERING CO.

Commercial testing & Lagracering Co. | Minerals Services - Corporate Office

1319 S. (Ilightand Aye., Suite 2100, Lombard, N. 60148 (630) 953-9300 (1830) 953-9308 www.sgs.com

nore Laborator

Manber of the SRS Broom (Section Stanfold de Surveillance)

E5.9

SS98 6+S 01+

Uaspuans Jun 02 03 02:23p Svendsen

410 549 8652

p.2

FROM : SGS-BALTIMORE

FAX NO. :4103551965

Jul. 03 2003 10:46AM P3

June 27, 2003

Constellation Energy Group Fort Smallwood Complex 1000 Brandon Shores Road Baltimore, MD 21226

ADDRESS ALL CORRESPONDENCE TO: COMMERCIAL TESTING & ENGINEERING CO. 1501-A EAST PATAPSCO AVENUE BALTIMORIE, MD 21228 TEL: (410) 355-1958 FAX: (410) 355-1985

Sample identification by

Yourselves

Kind of sample

COAL

reported to us

Sample taken at CRANE Sample taken by

Yoursclves

Date sampled

Date received June 13, 2003

COAL

C1-COAL-0417

EMISSION STRATEGIES

SHEILA GLESMAN

Analysis report no. B6-10735-03

RESULTS pom

Mercury, Hg

PARAMETER

0.26 ppm

Respectfully submitted, COMMERCIAL TESTING & ENGINEERING CO.

Baltimore Laboratory

Communical Testing & Engineering Co. | Minorals Services - Corporate Office

June 4, 2003

Constellation Energy Group Fort Smallwood Complex 1000 Brandon Shores Road Baltimore, MD 21226

Kind of sample ASH reported to us

Sample taken at CRANE

Sample taken by Yourselves

Date sampled

Date received May 21, 2003

ADDRESS ALL CORRESPONDENCE TO: COMMERCIAL TESTING & ENGINEERING CO. 1501-A EAST PATAPSCO AVENUE BALTIMORE, MD 21226 TEL: (410) 355-1958 FAX: (410) 355-1965

Sample identification by Yourselves

ASH

C1-COMPOSITE-0417

EMISSION STRATEGIES

SHEILA GLESMAN/STEVE MATOUSEK

Analysis report no. 86-10701-36

PARAMETER

RESULTS ppm

Mercury, Hg

mgg 08.0

Loss on Ignition

13.93 %

ACIL

Respectfully submitted, COMMERCIAL TESTING & ENGINEERING CO.

Ballimore Laboratory

Commercial festing & Fogineering Co. 1

Minerals Services - Corporate Office

1919 S. Highland Ave., Suite 210B, Lombard, II. 60140 (1930) 963-9300 (1930) 953-9306 www.sns.com

Constellation Energy Group Fort Smallwood Complex 1000 Brandon Shores Road Baltimore, MD 21226

Kind of sample COAL reported to us

Sample taken at CRANE

Sample taken by Yourselves

_ - - - - -Date sampled

Date received May 21, 2003

ADDRESS ALL CORRESPONDENCE TO: COMMERCIAL TESTING & ENGINEERING CO. 1601-A EAST PATAPSCO AVENUE BALTIMORE, MO 21 226 TEL: (410) 355-1866 FAX: (410) 355-1965

Sample identification by Yourselves

COAL

C1-COAL-0418

EMISSION STRATEGIES

SHEILA GLESMAN/STEVE MATOUSEK

B6-10701-39 Analysis report no.

REBULTS ppm PARAMETER 0.16 ppm · Mercury, Hg

MEMBER

COMMERCIAL TESTING & ENGINEERING CO.

BOULTMANK LABORATORY

Commercial Testing & Engineering Co. | Minerals Services -: Corporate Office

1919 5, Highland Ave., Suita 2108, Lombord, IL 60148 (630) 953-9300 (1830) 953-9308 www.ngn.nom

Member of the SGS Group (Sneiter Générale de Servellance)

TERMS AND COMPITIONS ON BEVERSE

.E.465

June 4, 2003

Constellation Energy Group Fort Smallwood Complex 1000 Brandon Shores Road Baltimore, MD 21226

Kind of sample ASH

reported to us

Sample taken at CRANE

Sample taken by Yourselves

Date sampled

Date received May 21, 2003

ADDRESS ALI. CORRESPONDENCE TO: COMMERCIAL TESTING & ENGINEERING CO. 1501-A EAST PATAPSCO AVENUE BALTIMORE, MD 21226 TEL: (410) 355-1958 FAX: (410) 355-1966

Sample identification by Yourselves

C1-COMPOSITE-0418

EMISSION STRATEGIES

SHEILA CLESMAN/STEVE MATOUSEK

Analysis report no. 86-10701-38

PARAMETER

RESULTS ppm

Mercury, Hg

0.82 ppm

Lose on Ignition

19.28 %

Respectfully aubmitted, COMMERCIAL TESTING & ENGINEERING CO.

Baltimore Laboratory

FROM :SGS-BALTIMORE

FAX NO. :4103551965

Jun. 02 2003 09:40AM P25

SGS

June 2, 2003

Constellation Energy Group Fort Smallwood Complex 1000 Brandon Shores Road Baltimore, MD 21226

Kind of sample reported to us

COAL

Sample taken at CRANE

Sample taken by Yourselves

Date sampled

Date received May 21, 2003

ADDRESS ALL CORRESPONDENCE TO: COMMERCIAL TESTING & ENGINEERING CO. 18/01-A EAST PATAPSCO AVENUE BALTIMORE, MO 21226 TEL: (410) 355-1965 FAX: (410) 355-1965

Sample identification by Yourselves

COAL

C1-COAL-0419

EMISSION STRATEGIES

SHEILA GLESMAN/STEVE MATOUSEK :

Analysis report no. 86-10701-41

PARAMETER

RESULTS ppm

Mercury, Hg

0.07 ppm

ACIL

Rospocifully submilled, COMMERCIAL TESTING & ENGINEERING CO.

Daltimore i shomton

Communical Testing & Engineering Co. | Minerals Services - Corporate Office

1919 \$, Highland Ava., Suite 2108, Lombard, IL 60140 1 (630) 953-9300 1 (630) 953-9306 www.sgs.com

TERMS AND CONDITIONS ON REVERSE

Mamher of the SOS Group (Sociétà Générale de Surveillance)

F-463

June 4, 2003

Constellation Energy Group Fort Smallwood Complex 1000 Brandon Shores Road Baltimore, MD 21226

Kind of sample reported to us

Sample taken at CRANE

Sample taken by Yourselves

Date sampled

Date received May 21, 2003

ADDRESS ALL CORRESPONDENCE TO: COMMERCIAL TESTING & ENGINEERING CO. 1501-A EAST PATAPSCO AVENUE BALTIMORE, MD 21228 TEL: (410) 355-1958 FAX: (410) 355-1965

Sample identification by Yourselves

ASH

C1-COMPOSITE-0419

EMISSION STRATEGIES

SHEILA GLESMAN/STEVE MATOUSEK

Analysis report no.

86-10701-40

PARAMETER

RESULTS ppm

Mercury, Hg

0.71 ppm

Loss on Ignition

14,26 %

Respectfully submitted, COMMERCIAL TESTING & ENGINEERING CO.

Baltimoro Laboratory

Commercial Testing & Engineering Co. | Minerals Services - Corporate Office

1919 S. Highland Ave., Suite 210B, Lombard, IL 8014H + (630) 953-9300 - (1830) 953-9306 - www.sgs.com

Constellation Emergy Group Fort Smallwood Complex 1000 Brandon Shores Road Baltimore, MD 21226

Kind of sample COAL reported to us

Sample taken at CRANE

Bemple taken by Yourselves

Date sampled

Date received May 21, 2003

ADDRESS ALL CORRESPONDENCE TO: COMMERCIAL TESTING & ENGINEERING CO. 1501-A EAST PATAPSCO AVENUE BALTIMORE, MD 21220 TEL: (410) 355-1957 FAX: (410) 355-1965

Sample identification by Yourselves

COAL C1-COAL-0420

EMISSION STRATEGIES

SHEILA GLESMAN/STEVE MATOUSEK

Analysis report no. 86-10701-43

PARAMETER

Mercuxy, Hg

RESULTS ppm

0.08 ppm

ACIL

Respectfully automitted, COMMERCIAL TESTING & ENGINEERING CO.

Baltimore Laboratory

Commercial Institut & Liquitecting Co. Minerals Services - Corporate Office

1919 S. Highland Ava., Strito 2109, Lombard, IL 60148 (830) 953-9300 (1630) 953-7308 www.sps.com

Marthy of the SGS Group (Société Générale de Scovellance)

TERMS AND CONDITIONS ON REVERSE

June 4, 2003

Constellation Energy Group Fort Smallwood Complex 1000 Brandon Shores Road Baltimore, MD 21226

ADDRESS ALL CORRESPONDENCE TO: COMMERCIAL TESTING & ENGINEERING CO. 1501-A EAST PATAPSCO AVENUE BALTIMORE, MD 21226 TEL: (410) 365-1958 FAX: (410) 365-1985

Sample identification by Yourselves

Kind of sample reported to us

Sample taken at CRANE

Sample taken by Yourselves

Date sampled

Date received May 21, 2003 ASH

C1-COMPOSITE-0420

EMISSION STRATEGIES

SHEILA GLESMAN/STEVE MATOUSEK

Analysis report no.

86-10701-42

PARAMETER

RESULTS DOM

Mercury, Hg

0.95 ppm

Loss on Ignition

14.39 %

Respectfully aubmitted, COMMERCIAL TESTING & ENGINEERING CO.

Baltimore Laboratory

Commercial Testing & Engineering Co. | Minerals Services - Corporate Office

1919 S. Highland Ava., Suito 210B, Lombard, IL 6014B + (630) 953-9300 + (630) 953-9306 www.sgs.com

Constellation Energy Group Fort Smallwood Complex 1000 Brandon Shores Road Baltimore, MD 21226

Kind of sample reported to us

COAL

Sample taken at CRANE

Sample taken by Yourselves

Date sampled

Date received May 21, 2003

ADDRESS ALL CORRESPONDENCE TO: COMMERCIAL TESTING & ENGINEERING CO. 1501-A EAST PATAPSCO AVENUE BAI_TIMORE, MD 21226 TEL; (410) 355-1958 FAX: (410) 355-1966

Sample identification by Yourselves

COAL

C1-COAL-0421

EMISSION STRATEGIES

SHEILA GLESMAN/STEVE MATOUSEK

Analysis report no.

86-10701-45

PARAMETER

RESULTS DOM

Mercury, Hg

0.22 ppm

ACIL

Respectfully automitted.

COMMERCIAL TESTING & ENGINEERING CO.

Ballimore Laboratory

Commiscial Testing & Engineering Co. | Minerals Services - Eurporate Office

1919 S. Highland Ave., Suite 2108, Lombard, II. 60148 (630) 953-9300 (630) 953-9386 www.npr.com

Montton of the SGS Group (Scotlan Gándrain da Survalitanca)

TERMS AND CONDITIONS ON REVERSE

June 4, 2003

Constellation Energy Group Fort Smallwood Complex 1000 Brandon Shores Road Baltimore, MD 21,226

Kind of sample ASH reported to us

Sample taken at CRANE

Sample taken by Yourselves

Date sampled

Date received May 21, 2003

ADDRESS ALL CORRESPONDENCE TO: COMMERCIAL TESTING & ENGINEERING CO. 1501-A EAST PATAPSCO AVENUE BALTIMORE, MD 21228 TEL: (410) 355-1958 FAX: (410) 355-1965

Sample identification by Yourselves

ASH

C1-COMPOSITE-0421

EMISSION STRATEGIES

SHEILA GLESMAN/STEVE MATOUSEK

Analysis report no. 86-10701-44

PARAMETER

RESULTS DDM

Mercury, Hg

0.88 ppm

Loss on Ignition

14.17 %

Respectfully submitted, :
COMMERCIAL TESTING & ENGINEERING CO.

Baltimoro Laboratory

Minorals Services - Corporate Office

1919 S. Highland Avo., Suite 210B, Lombard, II. 60148 (1830) 953-9300 (1630) 953-9306 www.sgs.com

Constellation Energy Group Fort Smallwood Complex 1000 Brandon Shores Road Baltimore, MD 21226

Kind of sample reported to us COM

Sample taken at CRANE

Sample taken by Yourselves

Date sampled

Date received May 21, 2003

ADDRESS ALL CORRESPONDENCE TO: COMMERCIAL TESTING & ENGINEERING CO. 1501-A EAST PATAPSCO AVENUE BALTIMORE. MD 21226 TEL: (410) 355-1958 FAX: (410) 355-1965

Sample identification by Yourselves

COAL

C1.-COAL-0422

EMISSION STRATEGIES

SHEILA GLESMAN/STEVE MATOUSEK

Analysis report no. 86-10701-47

PARAMETER

RESULTS ppm

Mercury, Hg

0.13 ppm

ACIL

Respectfully submitted,
COMMERCIAL TESTING & ENGINEERING CO

Baltimore Laboratory

Commercial Testing & Engineering Co. | Minerals Services - Corporate Office

1919 S. Highland Ave., Suite 2109, Lomberd, IL 60148 1 (630) 953-9300 (630) 953-9300 www.sps.com

Member of the SGS Droup (Société Ednérale de Surveillence)

TEBMA AND A

uaspuans

9+S:SO EO SO nut

F-466

June 4, 2003

Constellation Energy Group Fort Smallwood Complex 1000 Brandon Shores Road Baltimore, MD 21226

Kind of sample ASH reported to us

Sample taken at CRANE

Sample taken by Yourselves

Date sampled

Date received May 21, 2003

ADDRESS ALL CORRESPONDENCE TO: COMMERCIAL TESTING & ENGINEERING CO. 1501-A EAST PATAPSCO AVENUE BALTIMORE, MD 21226 TEL: (410) 355-1958 FAX: (410) 355-1965

Sample identification by Yourselves

ASH

C1-COMPOSITE-0422

EMISSION STRATEGIES

SHEILA GLESMAN/STEVE MATOUSEK

Analysis report no. 8

86-10701-46

PARAMETER

RESULTS ppm

Mercury, Hg

mqq 83.0

Loss on Ignition

11.87 %

ACIL

Respectfully submitted, COMMERCIAL TESTING & ENGINEERING CO.

Ballimore Laboratory

Commercial Testing & Engineering Co.

Minarala Services - Curporate Office

1919 S. Highland Ave., Suito 2108, Lombard, IL 6014H (630) 953-9300 (630) 953-9306 www.sgs.com

June 11, 2003

Constellation Energy Group Fort Smallwood Complex 1000 Brandon Shores Road Baltimore, MD 21226

Kind of sample Coal reported to us

Sample taken at C.P. CRANE

Sample taken by Yourselves

Date sampled April 23, 2003

Date received April 28, 2003

ADDRESS ALL CORRESPONDENCE TO: ADDRESS AC CORRESPONDENCE TO:
COMMERCIAL TESTING & ENGINEERING CO.
1501-A EAST PATAPSCO AVENUE
BALTIMORE, MO 21226
TEL (410) 365-1858 FAX: (410) 355-1965

Sample identification by Yourselves

Sample ID:

C.P. CRANE Unit #1 11B FEEDER RUN I 4/23/03

MATOUSAX

Analysis Report No. 86-10675-27

PROXIMATE ANALYSIS	As Received	Dry Basis	ULTIMATE ANALYSIS	As Received	Dry Basis
% Moisture % Ash	6.72 7.81	XXXX 8.37	% Moisture % Carbon	6.72 72.66	XXXXX 77.89
% Volatile % Fixed Carbon	****** 100.00	XXXXX _XXXXX 100.00	% Hydrogen % Nitrogen % Sulfur	4.51 1.37 1.74	4.84 1.47 1.86
Btu/lb % Sulfur MAF Btu	12985 1.74	13920 1.86 15192	% Ash % Oxygen(diff)	$\frac{7.81}{5.19}$ 1.00.00	8.37 5,57 100.00

Respectfully submitted. COMMERCIAL TESTING & ENGINEERING CO.

Baltimore Laboratory

Contamercial Testing & Lugandaring Co. | Minerals Services - Corporate Office

1919 S. Highland Avo., Suite 2109, Londard, II. 60148 (630) 953-9300 (1630) 953-9306 www.sqs.com

SGS

June 2, 2003

Constellation Energy Group Fort Smallwood Complex 1000 Brandon Shores Road Baltimore, MD 21226

Kind of sample ASH reported to us

Sample taken at CRANE

Sample taken by Yourselves

Date sampled

Date received May 21, 2003

ADDRESS ALL CORRESPONDENCE TO: COMMERCIAL TESTING & ENGINEERING CO. 1501-A EAST PATAPSCO AVENUE BALTIMORE, MD 21226 TEL: (410) 355-1965 FAX: (410) 355-1965

Sample identification by Yourselves

ASH C1 RUN 1 COMPOSITE

EMISSION STRATEGIES

SHEILA GLESMAN/STEVE MATOUSEK

Analysis report no.

86-10701-31

RESULTS ppm

Mercury, Hg

PARAMETER

1.10 ppm

Loss on Ignition

13.75 %

ACIL

Respectfully submitted, COMMERCIAL TESTING & ENGINEERING CO.

Bellimore Laboratory

Commercial testing & Logineering Co. | Minerale Services - Corporate Office

1919 S. Highland Ave., Suite 2108, Lombard, IL 60148 t [630] 363-9300 (1630) 953-9306 www.sgs.com

Marabay of the SGS Group (Socialal Manarala da Survellation)

TERMS AND CONDITIONS ON REVERSE

FROM : SGS-BALTIMORE

FAX NO. :4103551965

Jun. 03 2003 02:18PM P2

SGS

June 3, 2003

Constellation Energy Group Fort Smallwood Complex 1000 Brandon Shores Road: Baltimore, MD 21226

Kind of sample ASH reported to us

Sample taken at CRANE

sample taken by Yourselves

Date sampled

Date received May 21, 2003

ADDRESS ALL CORRESPONDENCE TO:
COMMERCIAL TESTING & ENGINEERING CO.
1501-A EAST PATAPSCO AVENUE
BALTIMORE, MD 21228
TEL: (410) 355-1956
FAX: (410) 355-1966

Sample identification by Yourselves

ASH C1

RUN 2 COMPOSITE

EMISSION STRATEGIES

SHEILA GLESMAN/STEVE MATOUSEK

Analysis report no.

86-10701-32

PARAMETER

RESULTS ppm

Mercury, Hg

1.50 ppm

Loss on Ignition

16.62 %

MEMBER

Respectfully submitted, COMMERCIAL TESTING & ENGINEERING CO.

Minerals Services - Compress Office

1919 S. Highland Avg., Suite 2108, Lombard, IL 60148 + (630) 453-9300 + (630) 953-9306 www.sqn.com

Monteur at the SRS Breat Reciets Septente de Succeillancet

Communical Testing & Engineering Co. | Minerals Services - Corporate Office

TE

F.4AA

FROM :SGS-BALTIMORE

FAX NO. :4103551965

Jun. 03 2003 02:18PM P3

June 3, 2003

Constellation Energy Group Fort Smallwood Complex 1000 Brandon Shores Road . Baltimore, MD 21226

ASH Kind of sample reported to us

Sample taken at CHANE.

Yourselves Sample taken by

Date sampled

Date received May 21, 2003

ADDRESS ALL CORRESPONDENCE TO: COMMERCIAL TESTING A ENGINEERING CO. 1501-A EAST PATAPSCO AVENUE BALTIMORE, MD 21726 TEL: (410) 355-1968 FAX: (410) 355-1965

Sample identification by

Yourselves

ASH C1 RUN 3 COMPOSITE

EMISSION STRATEGIES

SHEILA GLESMAN/STEVE MATOUSEK

86-10701-33 Analysis report no.

PARAMETER RESULTS ppm Mercury, Hg 1.50 ppm 19.58 % Loss on Ignition

Respectfully submitted. COMMERCIAL TESTING & ENGINEERING CO.

timore Laboratory

. :

Commercial Testing & Lightnaming Co. | Minerals Services - Corporate Office

1919 S. Highland Ave., Suite 2108, Lomberd, IL 60148 1 (630) 953-9300 1 (630) 953-9300 www.sgs.com

Member of the SGS Group (Societo Controls in Surveillance)

TERMO AND CONDITIONS ON REVERSE

P1480

Constellation Energy Group Fort Smallwood Complex 1000 Brandon Shores Road ' Baltimore, MD 21226

Kind of sample reported to us

COAL

Sample taken at CRANE

Sample taken by Yourselves

Date sampled -----

Date received May 21, 2003

ADDRESS ALL CORRESPONDENCE TO: COMMERCIAL TESTING & ENGINEERING CO. 1501-A EAST PATAPSCO AVENUE PALTIMORE, MO 2122G TEL: (410) 355-1958 FAX: (410) 355-1965

Sample identification by Yourselves

COAL

C1-COAL-0425

EMISSION STRATEGIES

SHEILA GLESMAN/STEVE MATOUSEK

86-10701-49 Analysis report no.

PARAMETER

MESULTS ppm

Mercury, Hg

0.07 ppm

MEMBER

Respectfully submitted. COMMERCIAL TESTING & ENGINEERING CO.

Baltimore Laboratory

Commercial Testing & Engineering Co. | Minbrals Services - Corporate Office

1919 S. Highland Avn., Suite 210H, Lombard, IL 80148 (630) 953-9300 (630) 953-9308 www.sgs.com

Mamber of the SQS Group (Smiléth Günhrahı iln Survaillauce)

TERMS AND CONDITIONS ON REVERSE

F-460

June 4, 2003

Constellation Energy Group Fort Smallwood Complex 1000 Brandon Shores Road Baltimore, MD 21226

Kind of sample ASII reported to us

Sample taken at CRANE

Yourselves Sample taken by

Date sampled

Date received May 21, 2003

ADDRESS ALL CORRESPONDENCE TO: COMMERCIAL TESTING & ENGINEERING CO. 1501-A EAST PATAPSCO AVENUE BALTIMORE, MD 21226 TEL: (410) 365-1958 FAX: (410) 365-1965

Sample identification by Yourselves

ASH

C1-COMPOSITE-0425

EMISSION STRATEGIES

SHEILA GLESMAN/STEVE MATOUSEK

86-10701-48 Analysis report no.

PARAMETER

RESULTS PPM

Mercury, Hg

0.78 ppm

Lose on Ignition

18.54 %

MEMBER

Respectfully submitted, COMMERCIAL TESTING & ENGINEERING CO.

Baltimore Laboratory

Commercial Texting & Engineering Co | Minerals Services - Corporate Office

1919 S. Highland Ave., Suita 210B, Lombard, IL 60148 1 (630) 953-9300 1 (630) 1153-9306 www.sqa.com FROM :SGS-BALTIMORE

FAX NO. :4103551965

Jun. 03 2003 02:18PM P4

June 3, 2003

Constellation Energy Group Fort Smallwood Complex 1000 Brandon Shores Road Baltimore, MD 21226

Kind of sample reported to us

CRANE Sample taken at

Yourselves Sample taken by

Date sampled

Date received May 21, 2003

ADDRESS ALL CORRESPONDENCE TO: COMMERCIAL TESTING B ENGINEERING CO. 1601-A EAST PATAPSCO AVENUE BALTIMORE. MD 21226 TEL: (410) 356-1950 FAX: (410) 355-1936

Sample identification by Yourselves

ASH C2 RUN 1 COMPOSITE

EMISSION STRATEGIES

SHEIL'A CLESMAN/STEVE MATOUSEK

Analysis report no. 86-10701-34

PARAMETER

RESULTS PPM

Morcury, Hg

0.23 ppm

Loss on Ignition

3.09 %

Respectfully submitted, COMMERCIAL TESTING & ENGINEERING CO.

Baltimore Laboratory

Commercial feeting & Engineering Co. | Minerals Services - Corporate Office

1919 S. Highland Ave., Suite 2108, Lombard, II. 60148 1 (630) 953-9300 1 (630) 953-9306 www.sgs.com

Majabor of the SGE Group (Sociate Dandrale de Sujunidance)

TERMS AND CONDITIONS ON REVERSE

FROM :SGS-BALTIMORE

FAX NO. :4103551965

Jun. 03 2003 02:18PM P5

SGS

June 3, 2003

Constellation Energy Group Fort Smallwood Complex (1000 Branden Shores Road | Baltimore, MD 21226

ASH

Kind of sample reported to us

Sample taken at CRANE

Sample taken by Yourselves

Date sampled

Date received May 21, 2003

ADDRESS ALL CORRESPONDENCE TO: COMMERCIAL TESTING & ENGINEERING CO. 1501-A EAST PATAPSCO AVENUE BALTIMORE, MO 21226 TEL: (410) 355-1865 FAX. (410) 355-1865

Sample identification by Yoursclves

ASH C2 RUN 2 COMPOSITE

EMISSION STRATEGIES

SHEILA GLESMAN/STEVE MATOUSEK

Analysis report no.

86-10701-35

PARAMETER

RESULTS ppm

0.22 ppm

Loss on Ignition

Mercury, Hg

Commendat Jesting & Enganeering Co. 1

3.60 %

ACIL

Respectfully automitted, COMMERCIAL TESTING & ENGINEERING CO.

Minerals Services - Corporate Office

1919 S. Highland Ave., Suite 210R, Lombent, II. 60148 (630) 953-9300 (630) 953-9306 www.sgs.com

Member of the SBS Grup (Spelled Ghadrain do Sarvellings)

FROM :SGS-BALTIMORE

June 11, 2003

Constellation Energy Group Fort Smallwood Complex 1000 Brandon Shores Road Baltimore, MD 21226

Kind of sample Coal reported to us

Sample taken at C.P. CRANE

Sample taken by Yourselves

Date sampled April 25, 2003

Date received April 28, 2003

ADDRESS AU, CORRESPONDENCE TO: COMMERCIAL TESTING & ENGINEERING CO. 1501-A EAGT FATAPSCO AVENUE SALTIMORE, MD 21226 TEL: (410) 355-1950 FAX: (410) 355-1986

Sample identification by Yoursel.vos

Sample ID:

C.P. CRANE Unit #2 218 FEEDER RUN 2 4/25/03

MATOUSAK

86-10675-38 Analysis Report No.

PROXIMATE ANALYSIS	As Received	Dry Basis	ULTIMATE ANALYSIS	As Received	Dry Basis
% Moisture % Ash % Volatile % Fixed Carbon	2.70 8.03 ****** ****** 100.00	**************************************	<pre>% Moisture % Carbon % Mydrogen % Mitrogen % Sulfur % Ash</pre>	2.70 74.97 4.62 1.46 2.49 8.03	77.05 4.75 1.50 2.56 8.25
Btu/lb % Sulfur MAF Btu	13423 2.49	13795 2.56 15035	% Oxygen (diff)	5.73 100.00	<u>5.89</u> 100.00

Rospectfully submitted, COMMERCIAL TESTING & ENGINEERING CO.

Communication & Luminocring Co. | Minerals Services - Europeans Office

1510 S. Highland Ave., Suite 2108, Lombard, IL 60148 t (630) 863-9300 1 (630) 953-9306 www.sqs.com

REPORT DATE: 5/6/03

Page 1 of 10

ORG. / DEPT: C. P. Crane SAMPLE NUMBER: F111183

SAMPLE SITE: C.P. Crane Unit 2 REFERENCE ID:

LOCATION: Comp 260 SAMPLE COLL. DATE: 4/25/2003

SAMPLE DESCRIPTION: DATE LOGGED: 4/30/2003

SUBMITTED BY: Davidson, F. DATE COMPLETED: 5/1/2003

CUSTOMER ADDRESS: C. P. Crane SAMPLE COLLECTION TIME:

SAMPLED BY:

COMMENTS:

ANALYSIS OR TEST	T NAME RESULT UNITS	

LECO MAC 400

Loss on ignition 1.74 %

Moisture 0.00 %

SPECIAL NOTES (if any):

AUG = 2.7% (all 10 samples)

REPORT DATE: 5/6/03

Page 2 of 10

ORG. / DEPT:

C. P. Crane

SAMPLE NUMBER:

F111184

SAMPLE SITE:

C.P. Crane Unit 2

REFERENCE ID:

LOCATION:

Comp 250

SAMPLE COLL. DATE: 4/25/2003

SAMPLE DESCRIPTION:

DATE LOGGED:

4/30/2003

SUBMITTED BY:

Davidson, F.

DATE COMPLETED:

5/1/2003

CUSTOMER ADDRESS: C. P. Crane

SAMPLE COLLECTION TIME:

SAMPLED BY:

COMMENTS:

ANALYSIS OR TEST NAME	RESULT UNITS

LECO MAC 400

Loss on ignition

2.88

%

Moisture

0.00

%

REPORT DATE: 5/6/03

Page 3 of 10

ORG. / DEPT: C. P. Crane SAMPLE NUMBER: F111185

SAMPLE SITE: C.P. Crane Unit 2 REFERENCE ID:

LOCATION: Comp 290 SAMPLE COLL. DATE: 4/25/2003

SAMPLE DESCRIPTION: DATE LOGGED: 4/30/2003

SUBMITTED BY: Davidson, F. DATE COMPLETED: 5/1/2003

CUSTOMER ADDRESS: C. P. Crane SAMPLE COLLECTION TIME:

SAMPLED BY:

COMMENTS:

ANALYSIS OR TEST NAME RESULT UNITS

LECO MAC 400

Loss on ignition 2.41 %

Moisture 0.00 %

REPORT DATE: 5/6/03

Page 4 of 10

ORG. / DEPT:

C. P. Crane

SAMPLE NUMBER:

F111186

SAMPLE SITE:

C.P. Crane Unit 2

REFERENCE ID:

LOCATION:

Comp 210

SAMPLE COLL. DATE: 4/25/2003

SAMPLE DESCRIPTION:

DATE LOGGED:

4/30/2003

SUBMITTED BY:

Davidson, F.

DATE COMPLETED:

5/1/2003

CUSTOMER ADDRESS: C. P. Crane

SAMPLE COLLECTION TIME:

SAMPLED BY:

COMMENTS:

ANALYSIS OR TEST NAME	RESULT	UNITS

LECO MAC 400

Loss on ignition

3.24

%

Moisture

0.00

%

REPORT DATE: 5/6/03

Page 5 of 10

ORG. / DEPT:

C. P. Crane

SAMPLE NUMBER:

F111187

SAMPLE SITE:

C.P. Crane Unit 2

REFERENCE ID:

LOCATION:

Comp 230

SAMPLE COLL. DATE: 4/25/2003

SAMPLE DESCRIPTION:

DATE LOGGED:

4/30/2003

SUBMITTED BY:

Davidson, F.

DATE COMPLETED:

5/1/2003

CUSTOMER ADDRESS: C. P. Crane

SAMPLE COLLECTION TIME:

SAMPLED BY:

COMMENTS:

ANALYSIS OR TEST NAME RESULT UNITS	

LECO MAC 400

Loss on ignition

1.74

%

Moisture

0.00

%

REPORT DATE: 5/6/03

Page 6 of 10

ORG. / DEPT: C. P. Crane SAMPLE NUMBER: F111188

SAMPLE SITE: C.P. Crane Unit 2 REFERENCE ID:

LOCATION: Comp 200 SAMPLE COLL. DATE: 4/25/2003

SAMPLE DESCRIPTION: DATE LOGGED: 4/30/2003

SUBMITTED BY: Davidson, F. DATE COMPLETED: 5/6/2003

CUSTOMER ADDRESS: C. P. Crane SAMPLE COLLECTION TIME:

SAMPLED BY:

COMMENTS:

ANALYSIS OR TEST NAME	RESULT UNITS	

LECO MAC 400

Loss on ignition 3.26 %

Moisture 0.00 %

REPORT DATE: 5/6/03

Page 7 of 10

ORG. / DEPT:

C. P. Crane

SAMPLE NUMBER:

F111189

SAMPLE SITE:

C.P. Crane Unit 2

REFERENCE ID:

SAMPLE COLL. DATE: 4/25/2003

LOCATION:

Comp 270

DATE LOGGED:

4/30/2003

SUBMITTED BY:

Davidson, F.

DATE COMPLETED:

5/6/2003

CUSTOMER ADDRESS: C. P. Crane

SAMPLE DESCRIPTION:

SAMPLE COLLECTION TIME:

SAMPLED BY:

COMMENTS:

ANALYSIS OR TEST NAME RESULT UNITS

LECO MAC 400

Loss on ignition

3.21

%

Moisture

0.00

%

REPORT DATE: 5/6/03

Page 8 of 10

ORG. / DEPT: C. P. Crane

SAMPLE NUMBER:

F111190

SAMPLE SITE:

C.P. Crane Unit 2

REFERENCE ID:

LOCATION:

Comp 270

SAMPLE COLL. DATE: 4/25/2003

SAMPLE DESCRIPTION:

DATE LOGGED:

4/30/2003

SUBMITTED BY:

Davidson, F.

DATE COMPLETED:

5/6/2003

CUSTOMER ADDRESS: C. P. Crane

SAMPLED BY:

SAMPLE COLLECTION TIME:

COMMENTS:

	The state of the s	AND CASE AND A SHARED SHEET AND A STREET AND A	The second secon	CONTRACTOR	AND THE RESERVE OF THE PROPERTY OF THE PROPERT	
ALIAE	VOID AD TEN		Description of the control of the co		#### 5.2 A 0.0.00 PROSES TO BE A 19 BUT	
	YSIS OR TES	The state of the s	The state of the s	RESUL	T UNITS	
			Thin in the state of the state		APPER TERRESPORTED FAMILIES OF THE PROPERTY OF	
	A CONTRACT OF THE PROPERTY OF THE PARTY OF T	The state of the s	PERSONAL PROPERTY OF STATE OF STREET, CONTRACTOR OF STATE OF STREET, CONTRACTOR OF STATE OF STREET, CONTRACTOR OF STATE	The party of the p	AND THE PROPERTY OF THE PROPER	

LECO MAC 400

Loss on ignition

2.57

%

Moisture

0.00

%

REPORT DATE: 5/6/03

Page 9 of 10

ORG. / DEPT: C. P. Crane SAMPLE NUMBER: F111191

SAMPLE SITE: C.P. Crane Unit 2 REFERENCE ID:

LOCATION: Comp 240 SAMPLE COLL. DATE: 4/25/2003

SAMPLE DESCRIPTION: DATE LOGGED: 4/30/2003

SUBMITTED BY: Davidson, F. DATE COMPLETED: 5/6/2003

CUSTOMER ADDRESS: C. P. Crane SAMPLE COLLECTION TIME:

SAMPLED BY:

COMMENTS:

ANIAL VOIC OF TECT			
ANALYSIS OR TEST	NAME	SULT UNITS	
	# \$25 0 314000 1		

LECO MAC 400

Loss on ignition 2.75 %

Moisture 0.00 %

REPORT DATE: 5/6/03				
		Page 10 of 10		
ORG. / DEPT:	C. P. Crane		SAMPLE NUMBER:	F111192
SAMPLE SITE:	C.P. Crane	Unit 2	REFERENCE ID:	
LOCATION:	Comp 280		SAMPLE COLL. DATE:	4/25/2003
SAMPLE DESCRIPTION:			DATE LOGGED:	4/30/2003
SUBMITTED BY:	Davidson, F.		DATE COMPLETED:	5/6/2003
CUSTOMER ADDRESS:	C. P. Crane		SAMPLE COLLECTION	TIME:
			SAMPLED BY:	
COMMENTS:				
ANALYSIS OR TEST NAI	WE IS		RESULT UNITS	
LECO MAC 400				
Loss on ignition		3.	14	%
Moisture		0.0	00	%
SPECIAL NOTES (if any):				
		APPROVED BY:	WK	

APPENDIX D.3 WAGNER STATION COAL AND ASH ANALYSES CAMPAIGN ONE

June 11, 2003

Constellation Energy Group Fort Smallwood Complex 1000 Brandon Shores Road Baltimore, MD 21226

Kind of sample Coal reported to us

Sample taken at H.A. WAGNER

Sample taken by Yourselves

Date sampled April 15, 2003

Date received April 28, 2003

ADDRESS ALL CORRESPONDENCE TO: COMMERCIAL TESTING & ENGINEERING CO. 1501-A EAST PATAPSCO AVENUE BALTIMORE, MD 21226 TEL: (410) 355-1958 FAX: (410) 385-1985

Sample identification by Yourselves

Sample ID:

H.A. WAGNER Unit #2 RUN 3 4/15/03

MATOUSAK

86-10675-46 Analysis Report No.

PROXIMATE ANALYSIS	As Received	Dry Basis	ULTIMATE ANALYSIS	As Received	Dry Basis
% Moisture % Ash & Volatile % Fixed Carbon	5.75 10.55 ****** ****** 100.00	11.19 ************************************	<pre>% Moisture % Carbon % Hydrogen % Nitrogen % Sulfur % Ash</pre>	5.75 70.34 4.18 1.33 0.75	74.63 4.43 1.41 0.80 11.19
Btu/lb % Sulfur MAF Btu	12670 0.75	13443 0.80 15137	% Oxygen(diff)	$\frac{7.10}{100.00}$	7.54 100.00

Respectfully submitted, COMMERCIAL TESTING & ENGINEERING CO.

Baltimore Laboratory

Commercial Insting & Engineering Co. [Minerals Services - Corporate Office

1919 S. Highland Ave., Suite 2108, Lombard, IL 50148 t (630) 953-9303 1 (630) 953-9306 www.sgs.com

Constellation Energy Group Fort Smallwood Complex 1000 Brandon Shores Road Baltimore, MD 21226

ADDRESS ALL CORRESPONDENCE TO: COMMERCIAL TESTING & ENGINEERING CO. 1501-A EAST PATAPSCO AVENUE BALTIMORE, MD 21228 TEL: (410) 355-1968 FAX: (410) 355-1965

Sample identification by

Yourselves

Kind of sample ASH

reported to us

Sample taken at WAGNER

Sample taken by Yourselves

Date sampled

Date received May 21, 2003

ASH W2 RUN 1

EMISSION STRATEGIES

SHEILA GLESMAN/STEVE MATOUSEK

Analysis report no. 86-10701-11

PARAMETER

KESULTS ppm

Mercury, Hg

0.19 ppm

Loss on Ignition

27.74 4

1400

Respectfully submitted. COMMERCIAL TESTING & ENGINEERING CO.

Conservation Testing & Engagorating Co. | Minerals Services - Corporate Office

1919 S. Highland Aye., Sulta 2108, Loinbard, IL 60148 (630) 163-9300 (630) 953-9308 www.sgx.com

Sallimore Laborator

Member of the SQS Group (Societé Quatrola de Surveillence)

SGS

June 2, 2003

Constellation Energy Group Fort Smallwood Complex 1000 Brandon Shores Road Baltimore, MD 21226

Kind of sample ASH reported to us

Sample taken at WAGNER

Sample taken by Yourselves

Date sampled

Date received May 21, 2003

ADDRESS ALL CORRESPONDENCE TO: COMMERCIAL TESTING & ENGINEERING CO. 1501-A EAST PATAPSCO AVENUE BALTIMORE, MD 21226 TEL: (410) 365-1958 FAX: (410) 355-1966

Sample identification by Yourselves

ASH W2 RUN 2

EMISSION STRATEGIES

SHEILA GLESMAN/STEVE MATOUSEK

Analysis report no.

86-10701-12

PARAMETER

RESULTS ppm

Mercury, Hg

0.14 ppm

Loss on Ignition

40.78 %

ACIL

Respectfully submitted,
COMMERCIAL TESTING & ENGINEERING CO.

Ballimore Laboratory

Communicate Teating & Engineering Co. | Minerala Services - Corporate Office

1919 S. Highland Ave., Suite 2100, Lombard, IL 50148 1 (630) 953-9300 1 (630) 953-9308 www.sqs.com

Monthler of the 202 Group (Snolate Ustratute (In Surveillance)

F- 4GQ

TERMS AND CONDITIONS ON REVERSE

Constellation Energy Group Fort Smallwood Complex 1000 Brandon Shores Road Baltimore, MD 21226

Kind of sample ASH reported to us

Sample taken at WAGNER

Sample taken by Yourselves

Date sampled -----

Date received May 21, 2003

ADDRESS ALL CORRESPONDENCE TO: COMMERCIAL TESTING & ENGINEERING CO. 1501-A EAST PATAPSCO AVENUE BALTIMORE, MO 21226 TEL: (410) 355-1958 FAX: (410) 356-1886

Sample identification by Yourselves

ASH W2

RUN 3

EMISSION STRATEGIES

SHEILA GLESMAN/STEVE MATOUSEK

Analysis report no. 86-10701-13

PARAMETER	RESULTS ppm
Mercury, Hg	0.11 ppm
Lose on Ignition	20.52 %

Respectfully submitted. COMMERCIAL TESTING & ENGINEERING CO.

Commenced Tristing N. Laginisaring Co. Minorals Services Corporate Office
1919 S. Highland Ave., Suite 2108, Lombard, ft, 80149 & (630) 953-9300 1 (630) 953-8306 www.sqs.cum

June 11, 2003

Constellation Energy Group Fort Smallwood Complex 1000 Brandon Shores Road Baltimore, MD 21226

Kind of sample Coal reported to us

Sample taken at H.A. WAGNER

Sample taken by Yourselves

Date sampled April 16, 2003

Date received April 28, 2003

ADDRESS ALL CORRESPONDENCE TO: COMMERCIAL TESTING & ENGINEERING CO. 1501-A EAST PATAPSCO AVENUE. BALTIMORE, MD 21228 TEL: (410) 355-1958 FAX: (410) 355-1965

Sample identification by Yourselves

Sample ID:

H.A. WAGNER Unit #3 RUN 3 4/16/03

MATOUSAK

Analysis Report No. 86-10675-45

PROXIMATE ANALYSIS	As Received	Dry Basis	ULTIMATE ANALYSIS	As Received	Dry Basis
<pre>% Moisture % Ash % Volatile % Fixed Carbon</pre>	8.00 10.38 xxxxx xxxxx 100.00	XXXXX 11.28 XXXXX XXXXX 100.00	% Moisture % Carbon % Hydrogen % Nitrogen % Sulfur % Ash	8.00 68.83 4.09 1.39 C.75 10.38	74.81 4.45 1.51 0.82 11.28
Btu/lb % Sulfur MAF Btu	12202 0.75	13263 0.82 14949	% Oxygen(diff)	6.56 100.00	$\frac{7.13}{100.00}$

Respectfully aubmitted. COMMERCIAL TESTING & ENGINEERING CO.

Baltimore Laboratory

Commercial Testing & Engineering Co. | Minorals Services - Corporate Office

1919 S. Highland Ave., Suite 210B, Lambord, IL 60148 (630) 953-9300 (630) 953-9306 www.sgs.com

Constellation Energy Group Fort Smallwood Complex 1000 Brandon Shores Road Baltimore, MD 21226 ADDRESS ALL CORRESPONDENCE TO: COMMERCIAL TESTING & ENGINEERING CO. 1501-A EAST PATAPPED AVENUE BALTIMORE, MD 21226 TEL: (410) 355-1968 FAX: (410) 355-1965

Sample identification by Yourselves

Kind of sample ASH reported to us

Sample taken at WAGNER

Sample taken by Yourselves

Date sampled

Date received May 21, 2003

ASH W3 RUN 1 ROW 1

EMISSION STRATEGIES

SHEILA GLESMAN/STEVE MATOUSEK

Analysis report no. 86-10701-14

PARAMETER

RESULTS pom

Mercury, Hg

0.28 ppm

Loss on Ignition

14.62 \$

ACIL

105

Respectfully submitted.

COMMERCIAL TESTING & ENGINEERING CO.

Ballimore Liberatory

Communical feeding & Legionering Co | Minerals Services - Corporeta Office

1919 S. Highland Avn., Suite 2108, Lombart, IL 60140 (630) 953-9300 (630) 953-9306 www.sos.com

Constellation Energy Group Fort Smallwood Complex 1000 Brandon Shores Road Baltimore, MD 23226

Kind of sample ASH reported to us

Sample taken at WAGNER

Sample taken by Yourselves

Date sampled

Date received May 21, 2003

ADDRESS ALL CORRESPONDENCE TO: COMMERCIAL TESTING & ENGINEERING CO. 1501-A EAST PATAPSCO AVENUE BALTIMORE, MD 21228 TEL: (410) 355-1958 FAX: (410) 366-1965

Sample identification by Yourselves

ASH WЗ RUN 2 ROW 1

EMISSION STRATEGIES

SHEILA GLESMAN/STEVE MATOUSEK

Analysis report no. 86-10701-15

PARAMETER RESULTS ppm Mercury, Hg 0.37 ppm Loss on Ignition 14.77 *

9 . 9

Respectfully submitted, COMMERCIAL TESTING & ENGINEERING CO.

Baltimore Laboratory

Community Inction & Lightering Co. | Minerals Services - Corporate Office

1919 S. Highland Ave., Suite 2109, Lombard, IL 60148 1 (630) 963-9360 1 (630) 953-9306 www.squ.com

Constellation Energy Group Fort Smallwood Complex 1000 Brandon Shores Road Baltimore, MD 21226

Kind of sample ASH reported to us

Sample taken at WAGNER

Sample taken by Yourselves

Date sampled

Date received May 21, 2003

ADDRESS ALL CORRESPONDENCE TO: COMMERCIAL TESTING & ENGINEERING CO. 1501-A EAST PATAPSCO AVENUE BALTIMORE, MD 21226 TEL: (410) 355-1858 FAX: (410) 355-1966

Sample identification by Yourselves

ASH W3

RUN 2 ROW 2

EMISSION STRATEGIES

SHEILA GLESMAN/STEVE MATOUSEK

Analysis report no. 86-10701-16

PARAMETER	RESULTS ppm
Mercury, Hg	0,50 ppm
Loss on Ignition	17.70 %

1EMBEA

Respectfully submitted, COMMERCIAL TESTING & ENGINEERING CO.

Commercial lesting & Engineering Co Microsis Services; Corporate Office

193.9 S. Highland Ave., Suite 2100, Combard, II. 50148 t (530) 953-9300 (630) 953-9306 www.sgs.com

SGS

June 2, 2003

Constellation Energy Group Fort Smallwood Complex 1000 Brandon Shores Road Baltimore, MD 21226 ADDRESS ALL CORRESPONDENCE TO: COMMERCIAL TESTING & ENGINEERING CO. 1501-A EAST PATAPSCO AVENUE RALTIMORE, MD 2122G TEL: (410) 365-1958 FAX: (410) 365-1965

Sample identification by Yourselves

Kind of sample ASH reported to us

Sample taken at WAGNER

Sample taken by Yourselves

Date sampled -

Date received May 21, 2003

ASH W3 RUN 3 ROW 1

EMISSION STRATEGIES

SHEILA GLESMAN/STEVE MATOUSEK

Analysis report no. 66-10701-17

PARAMETER

RESULTS DDM

Mercury, Hg

0.35 ppm

Loss on Ignition

13.36 %

ACIL

55

Respectfully submitted, COMMERCIAL TESTING & ENGINEERING CO.

Baltimore Laboratory

Commencial Institut & Engineering Co. | Minorals Services - Curporate Office | 1919 S. Highland Aug. Sciences

1919 S. Highland Ave., Suith 2109, Lombard, II. 60146 1 (630) 953-9300 1 (630) 953-9306 1 (630)

B . q

410 249 8652

Jun O2 03 02:20p Svendsen

Constellation Energy Group Fort Smallwood Complex 1000 Brandon Shores Road Baltimore, MD 21226

Kind of sample ASH reported to us

Sample taken at WAGNER

Sample taken by Yourselves

Date sampled

Date received May 21, 2003

ADDRESS ALL CORRESPONDENCE TO: COMMERCIAL TESTING & ENGINEERING CO. 1501-A EAST PATAPSCO AVENUE BALTIMORE, MD 21226 TEL: (410) 355-1958 FAX: (410) 355-1965

Sample identification by Yourselves

ASH W3 RUN 3 ROW 2

EMISSION STRATEGIES

SHEILA GLESMAN/STEVE MATOUSEK

Analysis report no. 86-10701-18

PARAMETER

RESULTS ppm

Mercury, Hg

0.62 ppm

Loss on Ignition

22.07 %

1EMBER

Respectfully aubmitted, COMMERCIAL TESTING & ENGINEERING CO.

Baltimore Laboratory

Commencial Teating & Engineering Co. | Minorale Services - Corporate Office

1917 S. Highland Ave., Sulta 2108, Lombard, IL 60148 4 (830) 953-9300 1 (600) 953-9306 www.sgs.com

Member of the SES Group (Socials Générale de Survoillence)

APPENDIX D.4

BRANDON SHORES AND WAGNER STATION COAL AND ASH ANALYSES CAMPAIGN TWO

TABLE 13:Coal						
					"BIK Cor"	
Lab Data Set ID	Run #	Sample ID	Unit and Run ID, Camp=Campaign	8/80	ng Hg /g	Replicate Analyses Average
THG9-031029-1	15614	C1-001	HAW 3, Run 3, Camp One	64.163 ng/g	64.09	
THG9-031029-1	15615	C1-002	HAW 3, Run 2, Camp One	66.119 ng/g	66.04	
THG9-031029-1	15616	C1-003	HAW 2, Run 3, Camp One	121.451 ng/g	121.38	
THG9-031029-1	15625	C1-004	HAW 2, Run 2, Camp One	61.239 ng/g	61.16	
THG9-031029-1	15626	C1-005	Crane 1, Run 1, Camp One	199.052 ng/g	198.98	
THG9-031029-1	15627	C1-006	Crane 2, Run 2, Camp One	66.834 ng/g	92.99	
THG9-031029-1	15628	C1-007	Crane 2, Run 3, Camp One	72.210 ng/g	72.14	
THG9-031029-1	15629	C1-008	Brandon 1, Run 2, Camp One	68.379 ng/g	68.30	
THG9-031029-1	15630	C1-009	Brandon 1, Run 3, Camp One	57.131 ng/g	57.06	
THG9-031029-1	15633	C1-010	Brandon 2, Run 2, Camp One	93.335 ng/g	93.26	
THG9-031029-1	15634	C1-011	Brandon 2, Run 1, Camp One	116.674 ng/g	116.60	
THG9-031029-1	15635	9/17/03 COAL	Brandon 1, Camp Two	41.998 ng/g	41.92	
THG9-031029-1	15636	9/19/03 COAL	HAW 3, Low Load, Camp Two	82.567 ng/g	82.49	
THG9-031029-1	15637	9/20/03 COAL	HAW 3, High Load, Camp Two	62.548 ng/g	62.47	
THG9-031029-1	15638	9/21/03 COAL	Brandon 2, Camp Two	56.122 ng/g	56.05	74.62 ng
THG9-031029-1	15639	10/2/03 COAL	Brandon 1, Camp Two	68.384 ng/g	68.31	
THG9-031029-1	15640	10/3/03 COAL	Brandon 1, Camp Two	60.454 ng/g	60.38	

			ı	l		
			ı	l		
			ı	l		
			ı	l		
			ı	l		
			ı	l		
			ı	l		
			ı	l		
			ı	l		
			ı	l		
			ı	l		
			Į	ı		
			I	l		
			ı	l		
	_		Į			
ž	7		l			
<	î			l		
_	7			l		
×		•				
7	١		ŀ	l		
Ū	j		I	l		
-	4		I	l		
-			ı	l		
Y	1		ı	l		
7	٦		l	l		
<	Ç			ı		
	4		I	l		
				_	_	

IADLE IS.FIY ASII				
				"Blk Cor"
Lab Data Set ID	Run#	Sample ID	g/gu	ng HgI(0) /trap
THG9-031016-1	15047	9/17/03-RUN1-ASH	151.869 ng/g	151.45
THG9-031016-1	15053	9/17/03-RUN3-ASH	115.982 ng/g	115.56
THG9-031016-1	15055	9/19/03-LOW LOAD-ASH	151.098 ng/g	150.68
THG9-031016-1	15057	9/20/03-HIGH LOAD-ASH	50.101 ng/g	49.68
THG9-031016-1	15059	9/21/03-RUN1-ASH	29.573 ng/g	29.16
THG9-031016-1	15069	9/21/03-RUN2-ASH	11.119 ng/g	10.70

EMISSION STRATEGIES, INC. 447 Larkspur Lane Severna Park, MD 21146

ADDRESS ALL CORRESPONDENCE TO: COMMERCIAL TESTING & ENGINEERING CO. 1501-A EAST PATAPSCO AVENUE BALTIMORE, MD 21226 TEL: (410) 355-1958 FAX: (410) 355-1965

Sample identification by

Yourselves

Kind of sample Coal

reported to us

Sample taken at

Sample taken by Yourselves

Date sampled September 17, 2003

Date received October 14, 2003

Sample ID:

9/17/03 COAL

Analysis Report No. 86-10844-01

PROXIMATE ANALYSIS			ULTIMATE ANALYSIS		
	As Received	Dry Basis		As Received	Dry Basis
% Moisture	8.09	xxxxx	% Moisture	8.09	xxxxx
% Ash	9.47	10.30	% Carbon	69.64	75.77
% Volatile	31.64	34.42	% Hydrogen	4.47	4.86
% Fixed Carbon	50.80	55.28	% Nitrogen	1.42	1.54
	100.00	100.00	% Sulfur	0.67	0.73
			% Ash	9.47	10.30
Btu/lb	12255	13334	% Oxygen(diff)	6.24	6.80
% Sulfur	0.67	0.73		100.00	100.00
MAF Btu		14865			
			% Chlorine	0.13	0.14

Respectfully submitted, COMMERCIAL TESTING & ENGINEERING CO.

Baltimore Laboratory

EMISSION STRATEGIES, INC. 447 Larkspur Lane Severna Park, MD 21146

ADDRESS ALL CORRESPONDENCE TO: COMMERCIAL TESTING & ENGINEERING CO. 1501-A EAST PATAPSCO AVENUE BALTIMORE, MD 21226 TEL: (410) 355-1958 FAX: (410) 355-1965

Sample identification by

Yourselves

Kind of sample ASH

reported to us

Sample taken at

Sample taken by Yourselves

Date sampled September 17, 2003

Date received October 14, 2003

Sample ID:

BRANDON SHORES 1 9/17/03

RUN #1 ASH

Analysis Report No. 86-10844-07

> Loss On Ignition 16.28%

Respectfully submitted, COMMERCIAL TESTING & ENGINEERING CO.

Baltimore Laboratory

Commercial Testing & Engineering Co. | Minerals Services - Corporate Office

1919 S. Highland Ave., Suite 210B, Lombard, IL 60148 t (630) 953-9300 f (630) 953-9306 www.sgs.com

EMISSION STRATEGIES, INC. 447 Larkspur Lane Severna Park, MD 21146

ADDRESS ALL CORRESPONDENCE TO: COMMERCIAL TESTING & ENGINEERING CO. 1501-A EAST PATAPSCO AVENUE BALTIMORE, MD 21226 TEL: (410) 355-1958 FAX: (410) 355-1965

Sample identification by

Yourselves

Kind of sample ASH

reported to us

Sample taken at

Sample taken by Yourselves

Date sampled September 17, 2003

Date received October 14, 2003

Sample ID:

9/17/03

RUN #3

WAGNERS BRANDON SHORES I

ASH

Analysis Report No. 86-10844-08

> Loss On Ignition 16.06%

Respectfully submitted, COMMERCIAL TESTING & ENGINEERING CO.

Baltimore Laboratory

Commercial Testing & Engineering Co. | Minerals Services - Corporate Office

1919 S. Highland Ave., Suite 210B, Lombard, IL 60148 t (630) 953-9300 f (630) 953-9306 www.sgs.com

EMISSION STRATEGIES, INC. 447 Larkspur Lane Severna Park, MD 21146

ADDRESS ALL CORRESPONDENCE TO: COMMERCIAL TESTING & ENGINEERING CO. 1501-A EAST PATAPSCO AVENUE BALTIMORE, MD 21226 TEL: (410) 355-1958 FAX: (410) 355-1965

Sample identification by

Yourselves

Kind of sample Coal

reported to us

Sample ID:

Sample taken at

10/02/03 COAL

BS 1

Sample taken by Yourselves

Date sampled October 2, 2003

Date received October 14, 2003

Analysis Report No. 86-10844-05

PROXIMATE ANALYSIS			ULTIMATE ANALYSIS		
	As Received	Dry Basis		As Received	Dry Basis
% Moisture	8.35	xxxxx	% Moisture	8.35	xxxxx
% Ash	11.03	12.04	% Carbon	67.84	74.02
% Volatile	30.96	33.78	% Hydrogen	4.35	4.75
% Fixed Carbon	49.66	<u>54.18</u>	% Nitrogen	1.33	1.45
	100.00	100.00	% Sulfur	0.63	0.69
			% Ash	11.03	12.04
Btu/lb	11975	13066	% Oxygen(diff)	6.47	7.05
% Sulfur	0.63	0.69		100.00	100.00
MAF Btu		14854			
			% Chlorine	0.12	0.13

Respectfully submitted. COMMERCIAL TESTING & ENGINEERING CO.

Baltimore Laboratory

EMISSION STRATEGIES, INC. 447 Larkspur Lane Severna Park, MD 21146

ADDRESS ALL CORRESPONDENCE TO: COMMERCIAL TESTING & ENGINEERING CO. 1501-A EAST PATAPSCO AVENUE BALTIMORE, MD 21226 TEL: (410) 355-1958 FAX: (410) 355-1965

Sample identification by

Yourselves

Kind of sample Coal

reported to us

Sample ID:

Sample taken at

10/03/03 COAL

BS 1

Sample taken by Yourselves

Date sampled October 3, 2003

Date received October 14, 2003

Analysis Report No. 86-10844-06

PROXIMATE ANALYSIS			ULTIMATE ANALYSIS		
	As Received	Dry Basis		As Received	Dry Basis
% Moisture	5.16	xxxxx	% Moisture	5.16	xxxxx
% Ash	10.45	11.02	% Carbon	71.65	75.55
% Volatile	32.16	33.91	% Hydrogen	4.55	4.80
% Fixed Carbon	52.23	<u>55.07</u>	% Nitrogen	1.50	1.58
	100.00	100.00	% Sulfur	0.70	0.74
			% Ash	10.45	11.02
Btu/lb	12733	13426	% Oxygen(diff)	5.99	6.31
% Sulfur	0.70	0.74		100.00	100.00
MAF Btu		15089			
			% Chlorine	0.13	0.14

Respectfully submitted,

COMMERCIAL TESTING & ENGINEERING CO.

Baltimore Laboratory

EMISSION STRATEGIES, INC. 447 Larkspur Lane Severna Park, MD 21146

ADDRESS ALL CORRESPONDENCE TO: COMMERCIAL TESTING & ENGINEERING CO. 1501-A EAST PATAPSCO AVENUE BALTIMORE, MD 21226 TEL: (410) 355-1958 FAX: (410) 355-1965

Sample identification by

Yourselves

Kind of sample Coal

reported to us

Sample taken at

Sample taken by Yourselves

Date sampled September 21, 2003

Date received October 14, 2003

Sample ID:

9/21/03 COAL

BS 2

Analysis Report No. 86-10844-04

PROXIMATE ANALYSIS			ULTIMATE ANALYSIS		
	As Received	Dry Basis		As Received	Dry Basis
% Moisture	5.64	xxxxx	% Moisture	5.64	xxxxx
% Ash	9.64	10.22	% Carbon	71.52	75.80
% Volatile	33.08	35.06	% Hydrogen	4.62	4.90
% Fixed Carbon	51.64	54.72	% Nitrogen	1.45	1.54
	100.00	100.00	% Sulfur	0.66	0.70
			% Ash	9.64	10.22
Btu/lb	12751	13513	% Oxygen(diff)	6.47	6.84
% Sulfur	0.66	0.70		100.00	100.00
MAF Btu		15051			
			% Chlorine	0.11	0.12

Respectfully submitted,

COMMERCIAL TESTING & ENGINEERING CO.

Baltimore Laboratory

Commercial Testing & Engineering Co. | Minerals Services - Corporate Office

EMISSION STRATEGIES, INC. 447 Larkspur Lane Severna Park, MD 21146

ADDRESS ALL CORRESPONDENCE TO: COMMERCIAL TESTING & ENGINEERING CO.

1501-A EAST PATAPSCO AVENUE BALTIMORE, MD 21226 TEL: (410) 355-1958 FAX: (410) 355-1965

Sample identification by

Yourselves

Kind of sample ASH

reported to us

Sample taken at

Sample taken by Yourselves

Date sampled September 21, 2003

Date received October 14, 2003

Sample ID:

9/21/03

RUN #1 BRANDON SHORES 2

ASH

Analysis Report No. 86-10844-11

> Loss On Ignition 12.16%

Respectfully submitted, COMMERCIAL TESTING & ENGINEERING CO.

Baltimore Laboratory

ADDRESS ALL CORRESPONDENCE TO: COMMERCIAL TESTING & ENGINEERING CO. 1501-A EAST PATAPSCO AVENUE BALTIMORE, MD 21226 TEL: (410) 355-1958 FAX: (410) 355-1965

EMISSION STRATEGIES, INC. 447 Larkspur Lane Severna Park, MD 21146

Sample identification by

Yourselves

Kind of sample Coal

reported to us

Sample taken at

Sample taken by Yourselves

Date sampled September 19, 2003

Date received October 14, 2003

Sample ID:

9/19/03 COAL

BE HAW 3

LOW LOAD

Analysis Report No. 86-10844-02

PROXIMATE ANALYSIS			ULTIMATE ANALYSIS		
	As Received	Dry Basis		As Received	Dry Basis
% Moisture	6.04	xxxxx	% Moisture	6.04	xxxxx
% Ash	9.94	10.58	% Carbon	71.21	75.79
% Volatile	32.38	34.46	% Hydrogen	4.58	4.87
% Fixed Carbon	<u>51.64</u>	54.96	% Nitrogen	1.39	1.48
	100.00	100.00	% Sulfur	0.82	0.87
			% Ash	9.94	10.58
Btu/lb	12700	13516	% Oxygen(diff)	6.02	6.41
% Sulfur	0.82	0.87		100.00	100.00
MAF Btu		15115			
			% Chlorine	0.13	0.14

Respectfully submitted, COMMERCIAL TESTING & ENGINEERING CO.

Baltimore Laboratory

Member of the SGS Group (Société Générale de Surveillance)

October 21, 2003

EMISSION STRATEGIES, INC. 447 Larkspur Lane Severna Park, MD 21146 ADDRESS ALL CORRESPONDENCE TO: COMMERCIAL TESTING & ENGINEERING CO. 1501-A EAST PATAPSCO AVENUE BALTIMORE, MD 21226 TEL: (410) 355-1958 FAX: (410) 355-1965

Sample identification by

Yourselves

Kind of sample ASH reported to us

Sample taken at

Sample taken by Yourselves

Date sampled September 19, 2003

Date received October 14, 2003

Sample ID:

9/19/03

LOW LOAD WAGNER 3

ASH

Analysis Report No. 86-10844-09

Loss On Ignition 12.70%

ACIL

Respectfully submitted, COMMERCIAL TESTING & ENGINEERING CO.

Baltimore Laboratory

Commercial Testing & Engineering Co. | Minerals Services - Corporate Office

1919 S. Highland Ave., Suite 210B, Lombard, IL 60148 t (630) 953-9300 f (630) 953-9306 www.sgs.com

October 21, 2003

EMISSION STRATEGIES, INC. 447 Larkspur Lane Severna Park, MD 21146

ADDRESS ALL CORRESPONDENCE TO: COMMERCIAL TESTING & ENGINEERING CO. 1501-A EAST PATAPSCO AVENUE BALTIMORE, MD 21226 TEL: (410) 355-1958 FAX: (410) 355-1965

Sample identification by

Yourselves

Kind of sample Coal

reported to us

Sample taken at

Sample taken by Yourselves

Date sampled September 20, 2003

Date received October 14, 2003

Sample ID:

9/20/03 COAL

HAW 3

HIGH LOAD

Analysis Report No. 86-10844-03

PROXIMATE ANALYSIS			ULTIMATE ANALYSIS		
	As Received	Dry Basis		As Received	Dry Basis
% Moisture	9.16	xxxxx	% Moisture	9.16	xxxxx
% Ash	9.73	10.71	% Carbon	68.81	75.75
% Volatile	31.12	34.26	% Hydrogen	4.42	4.87
% Fixed Carbon	49.99	<u>55.03</u>	% Nitrogen	1.34	1.48
	100.00	100.00	% Sulfur	0.82	0.90
			% Ash	9.73	10.71
Btu/lb	12147	13372	% Oxygen(diff)	5.72	<u>6.29</u>
% Sulfur	0.82	0.90		100.00	100.00
MAF Btu		14976			
			% Chlorine	0.12	0.13

Respectfully submitted, COMMERCIAL TESTING & ENGINEERING CO.

Battimore Laboratory

October 21, 2003

EMISSION STRATEGIES, INC. 447 Larkspur Lane Severna Park, MD 21146

ADDRESS ALL CORRESPONDENCE TO: COMMERCIAL TESTING & ENGINEERING CO. 1501-A EAST PATAPSCO AVENUE BALTIMORE, MD 21226 TEL: (410) 355-1958 FAX: (410) 355-1965

Sample identification by

Yourselves

Kind of sample ASH

reported to us

Sample taken at

Sample taken by Yourselves

Date sampled September 20, 2003

Date received October 14, 2003

Sample ID:

9/20/03

WAGNERS HIGH LOAD

ASH

Analysis Report No. 86-10844-10

> Loss On Ignition 7.68%

Respectfully submitted, COMMERCIAL TESTING & ENGINEERING CO.

Baltimore Laboratory

APPENDIX E FLUE GAS MERCURY MEASUREMENTS

- E.1 COMPARISONS OF FLUE GAS ANALYSIS RESULTS BETWEEN TEST METHODS FROM CAMPAIGN ONE
- E.2 FGS SORBENT TRAP REPORTED LAB DATA FROM CAMPAIGN ONE
- E.3 LABORATORY FLUE GAS MEASUREMENT RESULTS FROM CAMPAIGN TWO

COMPARISONS OF FLUE GAS ANALYSIS RESULTS BETWEEN TEST METHODS FROM CAMPAIGN ONE APPENDIX E.1

Table E-1. Brandon Shores Unit 1 comparison of FMSS and Ontario Hydro stack test results. All results are at actual O₂ in ug/dncm.

		TEST SERIES 1	1	12	TEST SERIES 2	32		<u> </u>	TEST SERIES	3		
	Ю	FGS	FGS	동	FGS	FGS	FGS	ᆼ	FGS	FGS	НО	FGS
	Run 1	Run 1B	Run 1C	Run 2	Run 2B	Run 2C	Run 2D	Run 3	Run 3B	Run 3C	Avg	Avg
Particle	0.01	0.01	0.07	0.01	0.00	0.03	0.05	0.01	0.04	00.00	0.01	0.03
Vapor-Phase	8.3	6.7	6.4	6.7	5.1	7.0	10.3	6.9	4.5	1.4	2.7	5.9
Elemental Vapor	2.6	0.3	4.0	2.6	0.3	0.2	na	2.3	0.2	0.2	2.5	0.3
Oxidized Vapor	5.7	6.4	0.9	5.3	4.8	8.9	na	4.6	4.3	1.2	5.5	4.9
Total	8.3	6.7	6.5	7.9	5.1	7.0	10.3	6.9	4.5	1.4	7.7	5.9

Notes to Table E-1:

Runs 1B and 1C note that meter power was out for some period during sampling

Run 2C notes that meter volume was corrected

Run 2B notes that there was no inlet filter; potentially contaminating oxidized mercury measurement

Runs 3B and 3C note that laboratory signal low

Table E-2. Brandon Shores Unit 2 comparison of FMSS and Ontario Hydro stack test results. All results are at actual O₂ in ug/dncm.

									-		0			
		TEST SERIES	ES 1			TEST SERIES 2				IESI SEKIES	ES 3			
	НО	FGS	FGS	FGS	НО	FGS	FGS	FGS	НО	FGS	FGS	FGS	ЮН	FGS
	Run 1	Run 1B	Run 1C	Run 1D	Run 2	Run 2B	Run 2C	C Run 2D	Run 3	Run 3B	Run 3C	Run 3D	Avg	Avg
Particle	0.02	0.01	0.01	0.01	0.01	0.12	0	0.03 0.01	0.01	00.0	0.03	0.04	0.01	0.03
Vapor-Phase	7.4	7.4	8.5	7.5	8.1	7.2		7.7	.5 7.5	8.9	12.5	8.8	7.7	8.4
Elemental Vapor	2.6	0.1	0.3	na	2.8	0.4		0.3 na	2.8	9.0	0.3	na	2.7	0.3
Oxidized Vapor	4.7	7.3	8.1	па	5.3	8.9		7.4 na	4.8			na	4.9	8.0
Total	7.4	7.4	8.5	7.5	8.1	7.4		7.7 7.5	5 7.5	6.8	12.5	8.8	7.7	8.2

Notes to Table E-2:

Runs 1B and 1C note that meter volumes were corrected

Run 3B notes that sample volume is low

Table E-3. Brandon Shores Units 1 and 2 FMSS ESP inlet samples.

		UNIT 1				UNIT 2		
	1	2A	3A	Average	4	2A	3 A	Average
Particle	0.00	0.02	0.00	0.01	0.04	0.02	0.04	0.03
Vapor-Phase	8.6	14.7	9.5	11.2	7.0	7.5	8.4	9.7
Elemental Vapor	0.4	0.2	2.1	6.0	0.7	9.0	0.3	0.5
Oxidized Vapor	9.3	14.5	7.2	10.3	6.3	6.8	8.1	7.1
Total	9.8	14.7	9.2	11.2	7.0	7.5	8.5	7.7

Notes to Table E-3:

Run Unit 1, 2A notes that sample volume is low and the trap was sampled backwards Runs Unit 2, 1A and 2A note that moisture was present in sample line Run Unit 2, 3A notes that meter volume was corrected

Figure E-1. Brandon Shores Unit 2 Total Mercury Comparison of all Tests Conducted.

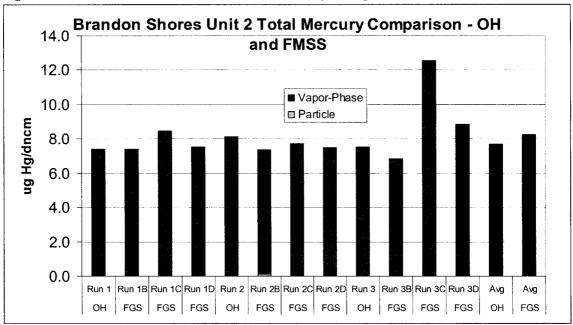


Figure E-2. Brandon Shores Unit 2 Comparison of all Speciation Tests Conducted.

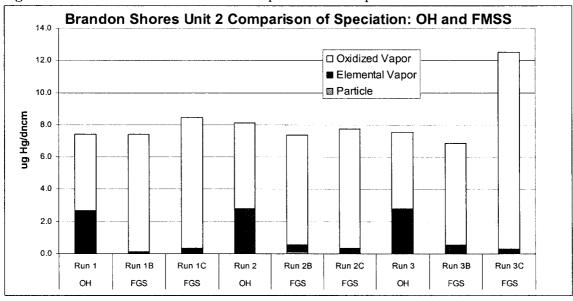


Table E-4. HA Wagner Unit 2 comparison of FMSS (Stack) and Ontario Hydro (Stack) test results. All results are at actual O2 in ug/dncm.

, and an										
		11	TEST SERIES	3.1	"	TEST SERIES	2 5			
	ᆼ	FGS	FGS	FGS	НО	FGS	FGS	Ю	НО	FGS
	Run 1	Run 1C	Run 1D	Run 1E	Run 2	Run 2C	Run 2D	Run 3	Average	Average
Particle	0.02	0.04	0.02	0.016	90.0	na	0.01	0.04	0.04	0.02
Vapor-Phase	7.2	4.1	3.4	2.3	7.3	4.2	4.0	6.1	6.9	3.6
Elemental Vapor	1.8	0.5	0.5	na	2.3	0.5	2.0	3.0	2.4	0.5
Oxidized Vapor	5.4	3.6	2.9	na	5.1	3.7	3.3	3.1	4.5	3.4
Total	7.2	4.2	3.5	2.3	7.4	4.3	4.1	6.1	6.9	3.7

Table E-5. HA Wagner Unit 2 inlet to ESP. All results are total mercury at actual O_2 in ug/dncm.

	HA Wagner Unit 2	r Unit 2
	18	2A
Particle	0.04	0.18
Elemental	6.0	2.0
Oxidized	3.2	3.0
Total	4.5	5.1

Table E-6. HA Wagner Unit 3 comparison of FMSS (ESP Outlet) and Ontario Hydro (Stack) test results. All results are at actual O₂ in ug/dncm.

	F	TEST SERIES	11	F	TEST SERIES 2	3.2		TEST SERIES	IES 3			
	동	FGS	ĭ	용	FGS	FGS	HO	FGS	FGS	FGS	НО	FGS
	Run 1	Run 1C	Run 1D	Run 2	Run 2C	Run 2D	Run 3	Run 3C	Run 3D	Run 3E	Average	Average
Particle	0.02	0.02	0.21	0.01	0.11	0.32	0.01	0.15	3.95	0.10	0.01	0.61
Vapor-Phase	3.2	3.0	3.2	5.6	2.3	5.3	5.3	5.1	7.8	5.1	4.7	4.8
Flemental Vapor	0.5	0.2	na	6.0	па	0.1	0.7	6.0	0.1	na	0.7	0.2
1	2.8	2.8	na	4.8	na	5.2	4.6	4.8	7.7	na	4.0	4.8
	3.2	3.1	3.4	5.6	2.4	5.7	5.3	5.4	11.8	5.3	4.7	5.5

Notes to Table E-6:

Run 2C indicates a problem with temperature controller: use only total mercury. Run 3D notes moisture in sample.

Table E-7. HA Wagner Unit 3 inlet to ESP. All results are total mercury at actual O2 in ug/dncm.

	H	Wagner Unit 3	it 3				
	14	18	2A	2B	3A	3B	Average
Total	3.4	5.4	4.2	2.2	10.5	8.3	5.7

Notes to Table E-7:

• Particulate in the Hg(+2) trap resulted in obtaining only total mercury.

APPENDIX E.2 FGS SORBENT TRAP LABORATORY DATA FROM CAMPAIGN ONE

Wagner Unit #3

Run#	Sample Location	Sample Type		Elemental	Oxidized	Vapor	Partic	
1A	Inlet	Speciation	3.409	0.089	па	na	na	Particulate in Hg(II) trap - use tota
1B	Inlet	Speciation	5.402	0.309	3.578	3.887	0.272	Annual Commence of the commenc
1C	Outlet	Speciation	3.076	0.162	2.826	2.988	0.021	
1D	Outlet	Total	3.437	na	na	3.201	0.214	
		run 1 avg	3.257	0.162	2.826	2.988	0.117	
2A	Inlet	Speciation	4.171	0.143	1.26	1.407	na ,	Particulate in Hg(II) trap
2B	Inlet	Speciation	2.210	0.110	1.79	1.902	na .	Particulate in Hg(II) trap 🔞 👚 👚
2C	Outlet	Speciation	2.427	na	na -	2.314	0.113	Temp Out Of Range - Speciation No
2D	Outlet	Speciation	5.663	0.102	5.18	5.281	0.320	
		run 2 avg	5.663	0.102	5.179	5.281	0.320	
3A	Inlet	Speciation	10.480	0.170	7.795	7.964	0.720	
3B	Inlet	Speciation	8.346	0.096	6.234	6.330	0.683	
3C	Outlet	Speciation	5.359	0.289	4.834	5.123	0.151	
3D	Outlet	Speciation	11.804	0.112	7.691	7.803	3.950	Likely particulate got into Hg(II) tra
3E	Outlet	Total	5.257	na	na	5.14	0.098	· · · · · · · · · · · · · · · · · · ·
		run 3 avg	7.474	0.200	6.263	6.021	1.400	
	1	W3 AVG - 3 rur	5.465	0.155	4.756	4.764	0.612	

Wagner Unit #2

Run #	Sample Location	Sample Type	Total Hg	Elemental	Oxidized	Vapor	Partic	
- 1A-	Inlet	Speciation	, na	na 🖟	na/	, na :	na	DQ - Plugged 'Inlet filter due to ma
1B	Inlet	Speciation	4.532	0.300	3.157	3.457	0.043	
1C	Outlet	Speciation	4.159	0.481	3.598	4.080	na	< No notes indicating a sampling p
1D	Outlet	Speciation	3.476	0.493	2.908	3.401	0.015	DQ - FMSS trap temp 68.16 - allow
							7944	care Noviger and a substantial control of the su
Sac B								
∗2A ″	Inlet	Speciation	5.115	1.960	2.977	4.938	y na	Speciation is Invalid - Frontier dige:
2C	Outlet	Speciation	4.338	0.484	3.712	4.196	na	
2D	Outlet	Speciation	4.141	0.703	3.261	3.965	0.009	
2E	Outlet	Total	3.762	na	na	na	0.052	

Branden Unit #2

		Brana		• —				
Run#	Sample Location	Sample Type	Total Hg	Elemental	Oxidized	Vapor	Partic	
1A	Inlet	Speciation	7.03	0.701	6.285	6.986	0.043	Vertical Probe Orientation - both IC
			Svet plan					
1D	Outlet	Total	7.54	na	na	7.535	0.007	
		run 1 avg	7.81	0.22	7.72	7.80	0.01	_
2Å	Inlet	Speciation	7.48	0.627	6.836	7.463	0.016	Vertical probe configuration - wate
2B	Outlet	Speciation	7.34	0.415	6.811	7.227	0.118	
2C	Outlet	Speciation	7.73	0.307	7.392	7.699	0.031	
2D	Outlet	Total	7.49	na	na	7.483	0.007	_
		run 2 avg	7.52	0.36	7.10	7.47	0.05	
	A uB.	10 00 00 00 00 1						
3B	Outlet	Speciation	6.83	0.528	6.306	6.834	na	
3C	Outlet	Speciation	12.53	0.289	12.216	12.505	0.028	
3D	Outlet	Total	8.85	na	na	8.808	0.037	_
		run 3 avg	9.41	0.41	9.26	9.38	0.03	
	BS	2 AVG- 3 runs:	8.25	0.33	8.03	8.22	0.03	

Branden Unit #1

Run #	Sample Location	Sample Type	Total Hg	Elemental	Oxidized	Vapor	Partic	
1A	Inlet	Speciation	9.76	0.426	9.331	9.757	na	
Section 1						The Park		Angelia (1974) and a second and a
		Run 1 avg	6.59	0.36	6.20	6.56	0.04	
. 2A.	Inlet	Speciation	* 14.73	0.188	14.527	14.715	0.019	DQ - Insufficient sample volume - P
2B	Outlet	Speciation	5.11	0.323	4.787	5.110	0.000	SDQ - p noted "no pre-filter present" -
2C	Outlet	Speciation	7.01	0.167	6.814	6.981	0.029	Op noted totalizer zeroed @ 13:16 (6 r
2D	Outlet	Total	10.33	na	na	10.283	0.047	
		run 2 avg	7.48	0.24	5.80	7.46	0.03	
3A	Inlet	Speciation	9.23	2.088	7.146	9.234	0.000	
3 B	Outlet	- Speciation	4.50	0.187	4.274	4,461	0.040	< DQ No notes from operator - how
3C	• Outlet	Speciation	1.44	0.213	1.228	1.441	0.003	DQ - digestion note - "no plug on Pl
		run 3 avg	2.97	0.20	2.75	2.95	0.02	
	F	3S 1 avg- 3 runs	5.68	0.27	4.92	5.66	0.03	

Crane Unit #1

		0. 0	- 011110	,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Run #	Sample Location	Sample Type	Total Hg	Elemental	Oxidized	Vapor	Partic	
1A	Inlet	Speciation	11.320	0.573	9.872	10.444	0.876	< speciation off due to too much page
		Na sana ara				*	e e jegen sa g	
to	Outlet	Speciation	2.410	0.014	2.393	2.407	0.004	Speciation is not accurate - no PHg
1D	Outlet	Speciation	2.195	0.014	2.179	2.193	0.001	Op noted - baghouse back on-line a
			11 12 See					
2B	Inlet	Total	4.895	na	0.000	0.000	1.151	Total Hg
2C	Outlet	Speciation	1.647	0.024	1.623	1.647	0.000	No notes form site operator - not e
. 2D	Outlet	Total	0.296	na .	0.000	0.000	0.022	DQ - number is simply not beleivab
3A	Inlet	Speciation /	0.376	0.094	0.039	0.133	0.243	Note - this entire series is not be
3B.,	i Inlet	. + Total	0.475	- na	0.000	0.000	0.142	< Note - this entire series is not be
3C)	Outlet	Speciation	0,632	0.000	0,629	0.629	0.003	Op noted flow rate unstable - 0.1-0
3 D	Outlet	Total	0.626	na	0.000	0.000	0.002	Note - this entire series is not be

Crane Unit #2

Run #	Sample Location	Sample Type	Total Hg	Elemental	Oxidized	Vapor	Partic	
1A	Inlet	Speciation	13.02	2.75	9.92	12.67	0.344	No notes from operator
1B	Outlet	Speciation	8.66	0.14	8.49	8.64	0.030	No notes from operator
2A	Inlet	Speciation	6.38	1.63	4.70	6.32	0.058	Frontier noted from field sheet - flo
2B	Inlet	Speciation	4.19	1.24	2.76	4.00	0.187	Frontier noted from field sheet - flo
	And the second s	351		2		H MT SHOOM - 22 PM JAPA 22, NJACABANA		
2D	Outlet	Speciation	6.74	0.05	6.67	6.72	0.020	< Frontier notes no end plugs on P
3 A	Inlet	 Speciation». 	5.29	1.71	3.47	5.18	0.114	< Sample volume too low for specia
3B	Inlet	Total	5.34	na	na	na	0.367	< Frontier noted from field sheet -
3C	Inlet	Speciation	na	na	na	na	na	Blank
3D	Outlet	Total	4.25	na	0.00	0.00	na	< Op noted total Hg trap on end of

APPENDIX E.3 LABORATORY FLUE GAS MEASUREMENT RESULTS FROM CAMPAIGN TWO

Tables E-8. Ontario Hydro flue gas results from Campaign Two. All results in ug/dncm at actual O_2 .

	all results	in ug/d	scm				
Brandon Shores 1	PM Hg	Hg +2	Hg 0	Total	% Oxidized	% Elemental	% Particle
Run 1	0.03	6.0	0.3	6.3	95%	5%	0.5%
Run 2	0.02	6.1	0.3	6.3	96%	4%	0.3%
Run 3	0.01	6.8	1.5	8.3	82%	18%	0.1%
Average	0.02	6.3	0.7	7.0	91%	9%	0.3%

	all results	in ug/d	scm				
Brandon Shores 2	PM Hg	Hg +2	Hg 0	Total	% Oxidized	% Elemental	% Particle
Run 1	0.02	8.43	0.38	8.8	95%	4%	0.2%
Run 2	0.01	7.2	0.24	7.5	97%	3%	0.1%
Run 3	0.02	5.9	0.22	6.1	96%	4%	0.3%
Average	0.02	7.2	0.3	7.5	96%	4%	0.2%

	all results	in ug/d	scm				
Wagner 3 Low Load	PM Hg	Hg +2	Hg 0	Total	% Oxidized	% Elemental	% Particle
Run 1	0.01	5.62	0.17	5.8	97%	3%	0.2%
Run 2	0.01	5.98	0.21	6.2	96%	3%	0.2%
Run 3	0.01	6.61	0.18	6.8	97%	3%	0.1%
Average	0.01	6.1	0.2	6.3	97%	3%	0.2%

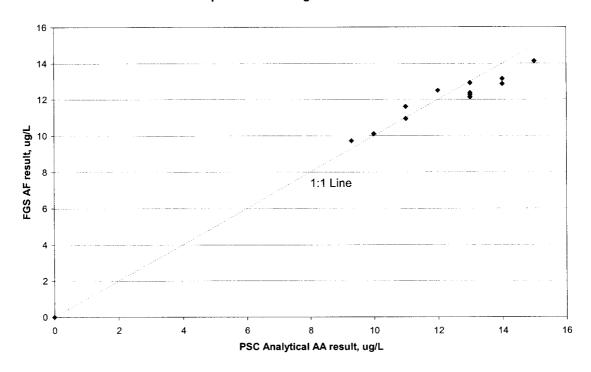

	all results	in ug/d:	scm				
Wagner 3 High Load	PM Hg	Hg +2	Hg 0	Total	% Oxidized	% Elemental	% Particle
Run 1	0.03	7.61	0.29	7.9	96%	4%	0.4%
Run 2	0.02	6.65	0.31	7.0	95%	4%	0.3%
Run 3	0.02	6.58	0.28	6.9	96%	4%	0.3%
Average	0.02	6.9	0.3	7.3	96%	4%	0.3%

Table E-9. Comparison Between AA and AF Analysis of Ontario Hydro KCl Impinger Solutions from Campaign Two.

KCl solution analyses	PSC Analytical		FGS	
Sample ID	AA	AF	AF	
	ug/L	ug/L	ng/L	
	0	0		
R03090543-01A	12	12.5	12501	BS1
R03090543-02A	13	12.9	12913	BS1
R03090543-03A	14	13.1	13141	BS1
R03090543-04A-Blank	<0.05ug / 100 mL	0.0	2	BS1
R03090544-01A-Blank	<0.05ug / 110 mL	0.0	5	BS 2
R03090544-02A	15	14.1	14123	BS 2
R03090544-03A	11	11.6	11599	BS 2
R03090544-04A	10	10.1	10100	BS 2
R03090545-01A	13	12.1	12130	HAW 3
R03090545-02A	13	12.3	12262	HAW 3
R03090545-03A	14	12.9	12866	HAW 3
R03090545-04A	13	12.4	12370	HAW 3
R03090545-05A	11	10.9	10940	HAW 3
R03090545-06A	9.3	9.7	9722	HAW 3
R03090545-07A-Blank	<0.05ug / 110 mL	0.0	3	
R03090545-08A-Blank	<0.05ug / 110 mL	0.0	5	
R03090543-01A-AD			12555	Duplicate
R03090543-02A-AD			11861	Duplicate
R03090543-01A-AS+23723.67 ng/L	100% recovery		109.1% rec	Spike
R03090543-02A-AS+23448.64 ng/L	97% recovery		108.4% rec	Spike

Figure E.3. Chart of Comparison Between AA and AF Analysis of Ontario Hydro KCl Impinger Solutions from Campaign Two.

Comparison of KCI Hg AA to AF results

ng Hg 175.32

ng Hg 0.066

ng Hg 27.09

153.50

27.33

0.000

27.17

0.000

57.14

160.17

0.057

27.80

2071.70

7.87

3577.43 236.85

202.02

1.20

275.39

0.31

Total Blank Corrected

> Trap Blank

> > Trap B

Trap A Recheck

Total Carbon Trap

Campaign Two	n Two								
Test ID	Trap ID	Start End Date/Time(EST) Date/Time(EST)	End Date/Time(EST)	Average Duct Temp	Average Gas Meter Temp	Average Pbar	Final Volume	Volume Temp/Pres Corrected	Trap A
				ĥ	ት	in. Hg	liters	std liters	ng Hg
CPSG-1	G-1 S211	9/17/03 9:05	9/17/03 10:59	338.2	7.77	29.83	26.0	25.4	143.08
	13			338.2	84.2	29.83	23.1	22.4	
CPSG-2	G-2 S212	9/17/03 12:10	9/17/03 14:00	355.8	81.9	29.87	24.0	23.4	132.44
	12			355.8	92.5	29.87	20.6	19.7	
CPSG-3	G-3 S213	9/17/03 15:20	9/17/03 17:05	356.7	83.5	29.87	21.3	20.6	0.22
	ည			356.7	94.3	29.87	17.7	16.8	
CPSG-4	G-4 S214	9/17/03 19:15	9/18/03 18:50	340.3	83.6	29.87	174.2	168.9	850.95
	14			340.3	94.4	29.87	185.1	176.0	
CPSG-5	6-5								
	15	9/21/03 7:25	9/21/03 16:05	330.7	92.2	29.84	140.5	134.0	
CPSG-6	G-6 L187	9/21/03 17:00	9/26/03 10:54	330.2	82.0	29.90	1422.4	1383.5	
10000	2000	0/20/02 44:20	40/4/02 7.44	0 000	0 04	30.00	EC9 4	0.094	00 6306
2		9/30/02 11.50	44: / CO/I /OI	328.9	80.5	29.96	371.8	363.7	2003.03
CPSG-8	G-8 S215	10/2/03 11:53	10/3/03 8:34	270.8	59.8	29.86	751.1	761.6	3375.47
	<u> </u>			270.8	6.69	29.86	521.0	518.0	
6-9SG2	G-9 S216	10/3/03 9:22	10/3/03 10:20	315.8	54.7	30.01	32.0	32.9	236.59
	1			315.8	63.4	30.01	21.5	21.7	
CPSG-10	3-10 S217	10/3/03 11:05	10/3/03 11:50	320.4	57.8	30.01	38.1	39.0	275.01
	9			320.4	8:59	30.01	27.4	27.6	
CPSG-0	G-0 S220	9/15/03 15:30	9/15/03 18:30						

		Page 1 of 2

npaign Tw						Speci	Speciated Carbon Traps	Traps				
Test ID	Corrected	Particulate Hg	Hg [°] A Trap	Hg° B Trap	Hg ^o B Trap Hg ⁺⁺ B Trap Hg ⁺⁺ Blanks Hg ⁺⁺ Blanks	Hg⁺⁺ B Trap	Hg [°] Blanks	Hg⁺⁺ Blanks		Total Corrected Total Particulate Correct Hg ^o	Total Corrected Hg ⁺⁺	Total Corrected Hg
	ug/dsm³	ng Hg	ng Hg	ng Hg	ng Hg	ng Hg	ng Hg	ng Hg	ug/dsm³	ug/dsm³	ug/dsm³	ug/dsm³
CPSG-1	06.9				7.21							
		0.037	0.50	0.08	6.75	0.19	0.101	0.0929	0.0017	0.0166	0.3149	0.33
CPSG-2	6.85											
		0.261	0.12	0.25	212.99	0.12	0.123	0.0565	0.0133	0.0085	10.8372	10.86
CPSG-3	1.32											
		0.143	0.20	0.07	0.17	0.00	0.105	0.0853	0.0085	0.0037	0.0027	0.01
CPSG-4	5.37		32.64									
		0.048	31.20	01.10	544.87	52.75	0.087	0.0117	0.0003	0.1808	3.3952	3.58
CPSG-5												
	, i	0.147	0.65	0.05	271.25	2.39			0.0011	0.0037	2.0418	2.05
9-9Sdo												
CPSG-7	3.69											
		0.165	1168.38	22.44	138.57	19.93			0.0005	3.2739	0.4355	3.71
CPSG-8	4.70											
		600.0	1353.59	6.82	342.80	158.80			0.0000	2.6259	0.9681	3.59
CPSG-9	7.20											
		0.000	1.12	0.08	0.53	0.13			0.0000	0.0457	0.0250	0.07
CPSG-10	7.06											
		0.011	5.05	0.08	15.66	0.54			0.0004	0.1780	0.5817	0.76
0-9Sd0												

APPENDIX F

ADA-ES REPORT ON MERCURY SEMI-CONTINUOUS EMISSIONS MONITORING AT CRANE UNIT 1

Mercury Testing at C.P. Crane Unit 1

March 18 - 24, 2003 DRAFT

Prepared For:

Emission Strategies, Inc.

Severna Park, Maryland

Prepared by:

ADA Environmental Solutions

8100 SouthPark Way, Unit B Littleton, CO 80120 (303) 734-1727

May 31, 2003

Executive Summary

On December 14th 2000, EPA announced that it would regulate mercury emissions from coal-fired boilers under Title III of the Clean Air Act Amendments of 1990. There is limited information available on the capability of existing pollution control technologies for mercury control. Constellation Power Source Generation (Constellation) tested six coal-fired utility boilers to better understand their mercury emissions and the potential applicability of control technologies. The Maryland Department of Natural Resources (MDNR) Power Plant Research Program (PPRP) participated in this program by funding portions of the mercury testing, and providing technical analysis of the results. Emission Strategies, Inc. provided coordination among the various participants, test crews, and laboratories; and will prepare the final report for the overall program. (2)

As part of the mercury characterization effort, Emission Strategies subcontracted to ADA Environmental Solutions (ADA-ES) to measure the mercury concentration and speciation on Unit 1 of the C.P. Crane Station using a semi-continuous emissions monitor (S-CEM). This report presents only the results from of the ADA-ES portion of the program.

- A summary of ADA-ES results is shown in Table ES-1. The data collected suggest that little vapor-phase mercury is captured with the Unit 1 fabric filter.
- During periods of high load following periods of low load and lower temperatures, the vapor-phase mercury at the outlet was higher than the inlet, indicating thermal desorption of mercury from the collected ash.
- The mercury at the inlet to the fabric filter was nominally 90% oxidized and increased to nominally 99% at the outlet.
- Large spikes in the inlet mercury concentration were observed. These appeared to be related to rapid changes in boiler operation. The spikes did not appear to affect the outlet mercury concentration.

Detailed discussions and presentations of all test data are provided in the report.

Table ES-1. Summary of Results from C.P. Crane

Location	Total Hg (μg/Nm³)	Elemental Hg (μg/Nm³)
Inlet	0.2 to 10	0.3 to 0.5
Outlet	0.2 to 13	<0.1

Table of Contents

1.0 Introduction	5
1.1 Purpose of Test	5
1.2 Facility Description	
1.3 Key Personnel	
2.0 Plant Description and Test Locations	7
2.1 C.P.Crane Unit 1	7
3.0 Summary and Discussion of Results	9
3.1 Presentation of Results	9
3.2 Summary of Results	9
4.0 Description of Mercury Monitors and Sampling Procedures	
4.1 Description of Mercury Monitor	15
4.2 Sampling Procedures and QA/QC	17
References	18

1.0 Introduction

Mercury from combustion sources is recognized as a major concern to the nation's air quality. The U.S. Environmental Protection Agency (EPA) submitted a Mercury Study Report to Congress that states that 52 of the 158 tons of anthropogenic Hg emissions in the United States are from coal-fired utility boilers (1). On December 14th 2000, EPA announced that it would regulate mercury emissions from coal-fired boilers under Title III of the Clean Air Act Amendments of 1990. EPA plans to issue final regulations by December 15th 2004 and is expected to require compliance by December 2007.

Constellation Power Source Generation (Constellation) tested six coal-fired utility boilers to better understand their mercury emissions and the potential applicability of control technologies. The Maryland Department of Natural Resources (MDNR) Power Plant Research Program (PPRP) participated in this program by funding portions of the mercury testing, and providing technical analysis of the results. Emission Strategies, Inc. provided coordination among the various participants, test crews, and laboratories; and will prepare the final report for the overall program.(2).

As part of the mercury characterization effort, Emission Strategies subcontracted to ADA Environmental Solutions (ADA-ES) to measure the mercury concentration and speciation on Unit 1 of the C.P. Crane Station using a semi-continuous emissions monitor (S-CEM). This report presents only the results from of the ADA-ES portion of the program.

1.1 Purpose of Test

The purpose of the ADA-ES portion of this test program was to continuously measure the mercury concentration and speciation at the inlet and outlet of the Crane Unit 1 fabric filter over a 7-day test period. To accomplish this, a mercury S-CEM was used during this program to provide near real-time feedback of mercury concentration and speciation at each sampling location.

1.2 Facility Description

Crane Units 1 & 2 are identical Babcock & Wilcox, opposed-wall-fired, wet-bottom, cyclone-burner boilers with a capacity of 200 MWe each. There are four cyclones per unit that burn Eastern Bituminous coal with a sulfur content of about 1.9 percent and mercury content ranging from 0.1 to 0.3 μ g/g. These units utilize the overfire air (OFA) portion of a retrofitted gas reburn system for NO_x control during the peak ozone season. The OFA system was used periodically during testing to determine its effect on gas phase mercury concentration.

Each unit is equipped with a GEESI reverse-gas style fabric filter with a design air-to-cloth ratio of $1.96 \, (\mathrm{ft^2/1000} \, \mathrm{acfm})$. There are ten modules in each fabric filter with 540 bags per module. Sonic horns are used to augment the reverse-air cleaning. Flue gas is exhausted to the atmosphere through a 384 foot stack.

1.3 Key Personnel

The Key Personnel coordinating efforts during ADA-ES testing at Crane are identified in Table 1-1.

Contact Name	Company	Telephone Number	Email Address	
Stephen J. Matousek -	CPSG	Office: 410-787-5275 Cell: 410-802-8079	Stephen.J.Matousek@constellation.com	
Ed Much	CPSG	Office: (410) 787-9073 Cell: (410) 530-4913	edwin.much@constellation.com	
Sheila Glesmann	Emission Strategies	Office: (410) 544-5292 Cell: (443 310-7169	sheila.glesmann@verizon.net	
Sharon Sjostrom	ADA-ES	Office: (303) 734-1727 Cell: (303) 919-8538	sharons@adaes.com	
Gerald Amhrein	ADA-ES	Office: (303) 734-1727 Cell: (303) 921-8138	jerrya@adaes.com	

C.P. Crane

Lou Gable at storeroom (682-9737) C. P. Crane 1001 Carroll Island Rd. Baltimore, MD 21220

2.0 Plant Description and Test Locations

2.1 C.P.Crane Unit 1

Unit 1 burns a bituminous coal in a B&W opposed-fired cyclone boiler with a nameplate capacity of 200 MW. A fabric filter is used for particulate control. Operating parameters for Unit 1 are summarized in Table 1.

Table 1. Plant Yates Unit 1 Operation

Parameter	Description
Boiler	
Туре	B&W opposed-fired
Burner Type	Cyclone
Equivalent Mwe	200
Coal	
Coal Type	Bituminous
Particulate Control	
Туре	Fabric Filter
Manufacturer	GEESI
Design	Reverse Gas with Sonic Horns
Air-to-cloth Ratio (ft/min)	1.96

Mercury measurements were made both upstream and downstream of the fabric filter. Figure 1 is a schematic of Unit 1 showing the sampling locations. Coal and ash samples were not collected by ADA-ES but were collected as part of the overall program.

The inlet sampling location, shown in Figure 2, was a single horizontal sampling port located at the inlet of the unit 1 fabric filter. The port was approximately five feet below the top of the duct and was the second from the top port in a row of seven vertical ports. The extraction probe was made up of three sections and extended eight feet into the duct from the flange. It could be shortened by removing sections of the probe.

The outlet sampling location, shown in Figure 3, was a single horizontal port located at the outlet of the fabric filter upstream of the ID fans. The port was the middle of three vertical ports at this location. The extraction probe extended eight feet into the duct from the flange. The length of the probe could be adjusted by removing or adding sections.

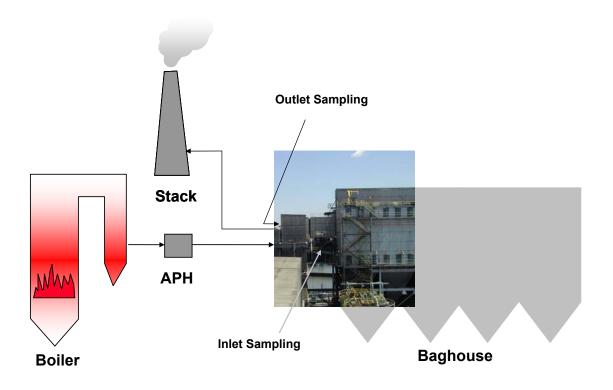


Figure 1. Mercury sampling locations at C.P. Crane Unit 1.

Figure 3. Outlet Test Port

3.0 Summary and Discussion of Results

3.1 Presentation of Results

The program objective was to continuously measure vapor phase mercury concentration and periodically measure speciation at the inlet and outlet of the C.P. Crane Unit 1 fabric filter during a 7-day period. To achieve this objective, ADA-ES used a single mercury S-CEM that alternately sampled gas at the inlet and outlet of the fabric filter. The S-CEM was capable of measuring either the total or elemental mercury concentration at each location.

The results from the S-CEM were later analyzed along with various plant operating data to develop short-term mercury concentration trends and to see if variables such as pressure drop across the fabric filter, gas temperature, boiler load, or other plant operating characteristics affected these trends.

The mercury S-CEM at Crane operated continuously from April 18 through April 25. Time trends of the mercury measurements, duct temperature at the sampling locations, and boiler load are shown in Figure 4. The mercury removal shown in Figure 4 is calculated using the mercury concentrations corrected to 3% oxygen to account for any change in mercury concentration resulting from air in leakage between the inlet and outlet sampling locations.

3.2 Summary of Results

The data collected at Crane, Unit 1 suggests that the change in vapor-phase mercury across the fabric filter (removal efficiency) is variable and, at times, the vapor-phase concentration at the outlet was higher than measured at the inlet, as shown in Figure 4. This observation could be caused by stratification in the mercury concentration (for example, if the mercury concentration at the inlet extraction location was below the average across the duct), or it could be caused by high mercury adsorption onto the fly ash prior to reaching the inlet extraction location.

Table 2 presents average mercury concentrations as measured by the S-CEMs at the inlet and outlet to the baghouse during the Ontario Hydro measurements. This table shows both a variation in total vapor phase mercury at the inlet (ranged from 0.31 to $4.92~\mu g/dNm^3$) and removal efficiency (6 to 80%). These data illustrate the dynamic nature of mercury in flue gas as it flows through the system. Trends observed during this test included:

- The inlet and outlet mercury concentrations tracked fairly closely except for periods immediately following a large increase in boiler load (e. 125 to 200 MW) when mercury levels increased at both locations, but the outlet was often higher than the inlet. Except for these transition periods, it is likely the reactive vapor-phase mercury is adsorbed onto the fly ash prior to reaching the inlet measurement location and very little additional reduction in vapor-phase mercury takes place on the bags. During these transitions, several key variables are changing that could cause this phenomena.
 - Temperature is one of the variables that can cause variations in mercury behavior because it determines when and the quantity of mercury a carbon/fly ash based sorbent can adsorb. The S-CEM measurements suggest that vapor phase mercury is adsorbed by the fly ash while in-flight at fairly significant levels. At lower boiler load conditions, temperatures are typically lower which improves the ability of fly ash to collect mercury, especially oxidized mercury (3). However, when temperature increases, such as often happens when the boiler load increases, the capacity of mercury that the fly ash (sorbent) can hold decreases. Thus, under certain conditions the mercury can be desorbed from the fly ash.

The outlet may be higher than the inlet for several hours as mercury slowly desorbs off the fly ash collected in the baghouse.

- o Figure 4 shows that mercury concentration varies from 0.2 to 10 μg/dNm³ at the inlet. This is probably a combination of differences in in-flight adsorption onto fly ash, partially explained above, and changes in coal and combustion conditions. For example, changes in amount and characteristics of the LOI carbon can cause differences in mercury concentration and removal efficiencies. This may have been occurring when inlet and outlet mercury levels diverged on April 22 and 23.
- In general there was very little mercury removal across the baghouse. This goes against conventional theory that shows, in most cases, very good removal across the baghouse because of the enhanced gas-particle interaction on the dustcake. However, there are a few sites where significant in-flight adsorption of vapor-phase mercury onto fly ash has been documented. This is more likely at sites with higher percentages of oxidized mercury, sufficient LOI carbon in the fly ash and temperatures less than 300°F. At Crane Station, it is possible that the fly ash has already reached its capacity for mercury with the mercury adsorbed while in-flight. Thus, when it reaches the baghouse, no additional mercury can be adsorbed.
- The fraction of elemental mercury is low at both extraction locations, as shown in Figures 5 and 6. At the inlet, the measurements indicate 90% of the mercury is in the oxidized form. At the outlet, 99% is in the oxidized form. The higher fraction of oxidized mercury at the outlet suggests that the mercury may be interacting with the fly ash and being further oxidized.
 - Researchers have documented that mercury is typically desorbed from sorbents in the oxidized form.
- Another interesting observation noted during testing was the periodic spikes in the inlet mercury concentration (4/20 4/22). These typically corresponded to spikes in both the boiler oxygen and the oxygen measured at the inlet extraction location (see Figure 7). Some of the oxygen spikes can correspond to momentary losses in coal feed to one of the mills and fluctuations in the cyclone air flow. The behavior of the mercury suggests that it is adsorbed on fly ash prior to the inlet extraction location and a portion of the collected mercury can be readily desorbed. No mercury spikes were observed at the outlet extraction location.

Table 2. Average Vapor-Phase Mercury Concentrations Measured by the SCEM During OH Runs

OH Run	Start Time	Stop Time	Inlet Total Vapor Hg μg/dNm ³ (@ 3% O ₂)	Outlet Total Vapor Hg μg/dNm ³ (@ 3% O ₂)	Inlet Elemental Hg µg/dNm³ (@ 3% O ₂)	Total Vapor Hg Removal (%)
Run 1	4/23/2003 12:25	4/23/2003 14:46	4.92	1.77	0.43	64
Run 2	4/23/2003 15:55	4/23/2003 18:15	4.49	0.90		80
Run 3	4/24/2003 8:50	4/24/2003 11:06	0.31	0.29		6

On the morning of April 23, the inlet extraction probe was shortened from 8-feet to 6-feet in an effort to determine if mercury stratification was the cause of the mercury concentrations measured at the inlet periodically exceeding the measurements at the outlet. In Figure 4, an interruption in the inlet mercury measurement can be noted from 9:00 to 11:45 am. Prior to 9:00 am, the probe was 8-feet long. After 11:45, the probe was 6-feet long. No change in mercury concentration or extraction temperature at the inlet was noted following the change in probe length.

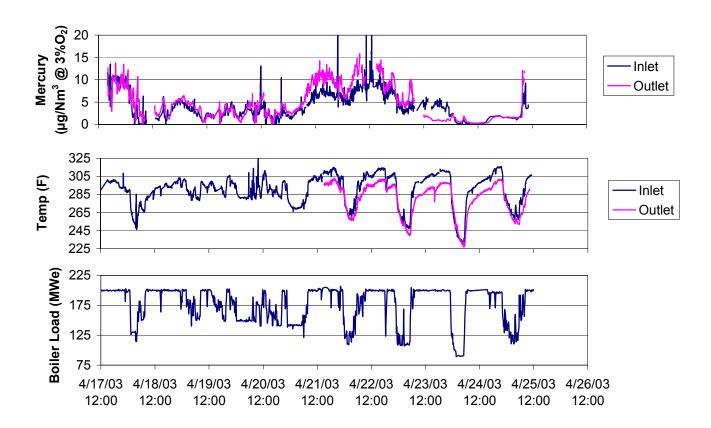


Figure 4. Variations in boiler load, temperature, and mercury concentrations at the inlet and outlet of the fabric filter at Crane Unit 1.

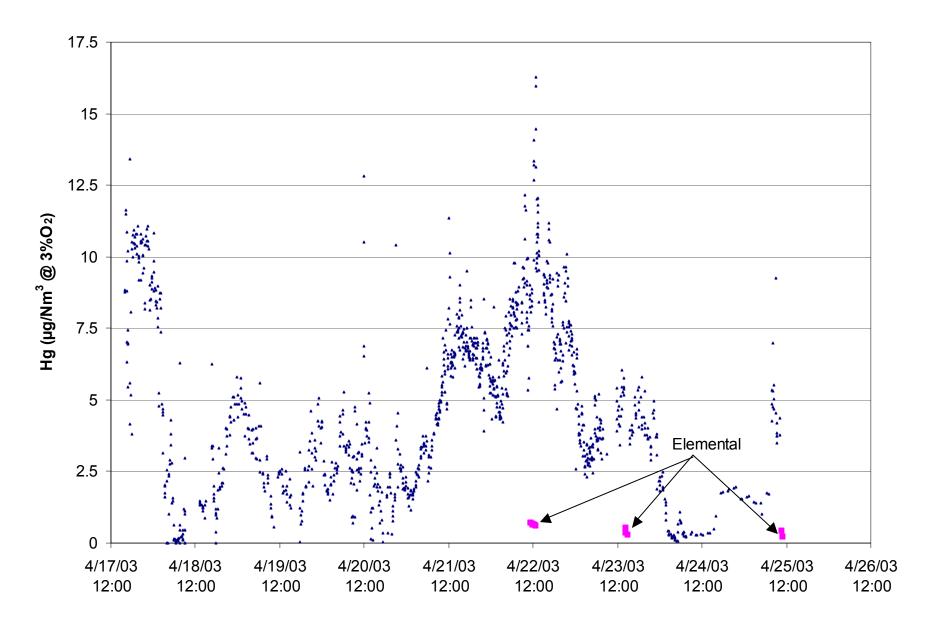


Figure 5. Inlet vapor-phase mercury concentration measured at Crane Unit 1

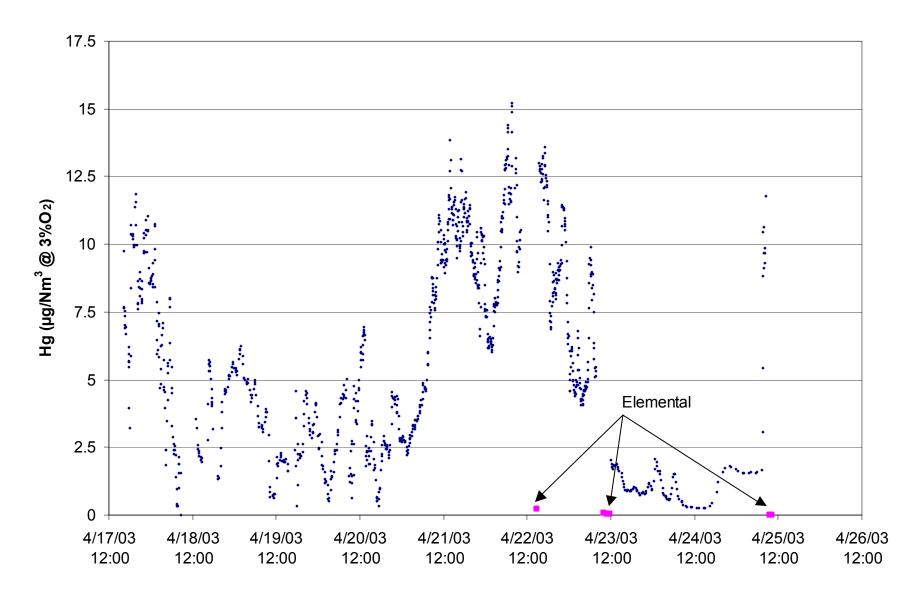


Figure 6. Outlet vapor-phase mercury concentration measured at Crane Unit 1

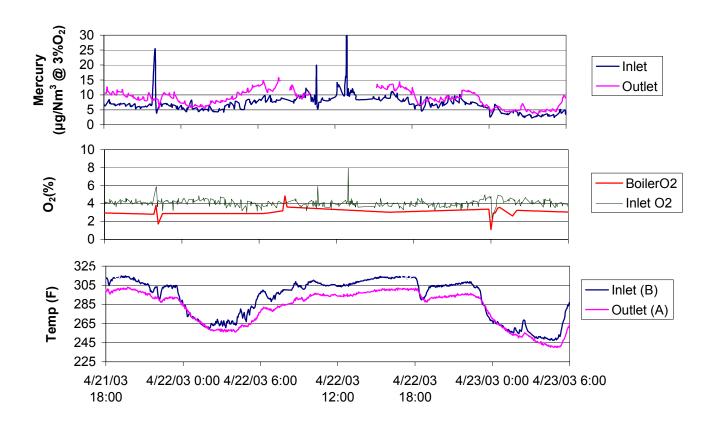


Figure 7. Comparison of oxygen spikes and inlet mercury spikes

4.0 Description of Mercury Monitors and Sampling Procedures

4.1 Description of Mercury Monitor

A semi-continuous mercury emissions monitor (S-CEM) was used during this program to provide near real-time measurement of mercury at the inlet and outlet of the fabric filter during one week of typical plant operation. The analyzer used for these tests consisted of a cold vapor atomic absorption spectrometer (CVAAS) coupled with a gold amalgamation system (Au-CVAAS). The system is calibrated using vapor phase elemental mercury. A schematic of the system is shown in Figure 5. The S-CEM was configured to automatically switch between two channels and so could measure either the total or elemental vapor phase mercury at the inlet and outlet of the fabric filter. A photograph of the S-CEM installed at Crane is shown in Figure 6.

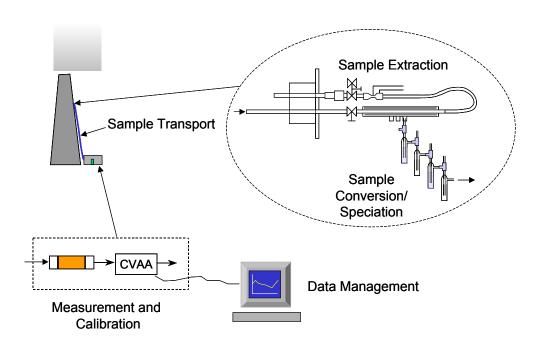


Figure 5. Schematic of the Mercury Measurement System.

Figure 6. Photograph of ADA-ES mercury S-CEM during installation at C.P. Crane Unit 1.

Although it is very difficult to transport non-elemental mercury in sampling lines, elemental mercury can be transported without significant problems. Since the Au-CVAAS measures mercury by using the distinct lines of the UV absorption characteristic of Hg⁰, the non-elemental fraction is either converted to elemental mercury (for total mercury measurement) or removed (for measurement of the elemental fraction) near the sample extraction point. This minimizes losses in the sampling lines.

For total vapor phase mercury measurements, all non-elemental vapor phase mercury in the flue gas must be converted to elemental mercury. A reduction solution of stannous chloride in hydrochloric acid is used to convert Hg^{2+} to Hg^0 . To measure speciated mercury, an impinger of potassium chloride (KCl) solution, mixed as prescribed by the draft Ontario Hydro Method, is used to capture oxidized mercury so that only the elemental fraction of the vapor phase mercury passes to the analyzer. Oxidized mercury can be calculated as the difference between the total mercury and the elemental mercury. The impinger solutions are continuously refreshed to assure adequate exposure of the gas to active chemicals.

4.2 Sampling Procedures and QA/QC

The analyzer sampling time is set to collect nominally 20 ng of mercury per sampling cycle. The noise level of the analyzer operating at a field site is approximately 1 ng, thus collecting 20 ng provides a signal to noise ratio of 20.

The analyzer is calibrated daily for mercury. The mass flow controller, oxygen cell, and temperature transmitters were calibrated before shipping the system to the site. Mercury calibration is achieved by injecting precise volumes of air saturated with elemental mercury vapor into the analyzer upstream of the gold trap. The mercury vapor is drawn from a vial containing liquid elemental mercury. Mercury concentration is calculated from a well-known correlation with barometric pressure and temperature. Vial temperature is measured with a precision thermometer. Calibration of the mass flow controller is periodically checked with a gas flow meter. Mercury vapor was also spiked upstream of each set of conversion impingers as part of the daily calibration routine to insure that gas preconditioning system was not removing mercury.

Documentation of analyzer calibrations, along with any system maintenance or changes, are recorded in a project notebook. A calibration file for the other instrumentation, which contains manufacturers' certification of calibration, is maintained by ADA-ES.

Data verification of computer calculations is conducted manually on a periodic basis. Any data collected during periods of suspected operational inconsistencies is rejected as questionable data.

References

- U.S. Environmental Protection Agency. Mercury Study Report to Congress Volume I: Executive Summary, Office of Air Quality Planning and Standards and Office of Research and Development, EPA-452/R-97-003, December 1997.
- Glesmann, Sheila. "Test Plan for Mercury measurements at Constellation Power Source Generation's Coal-Fired Units", Emission Strategies, March 2003.
- Sjostrom, S., Bustard, J., M. Durham, and R. Chang (2002). "Mercury Removal Trends and Options for Coal-Fired Power Plants with Full-Scale ESPs and Fabric Filters," Nineteenth Annual International Pittsburgh Coal Conference, Pittsburgh, PA, September 23-27.